Quantum walking in curved spacetime: (3+1) dimensions, and beyond

Abstract : A discrete-time Quantum Walk (QW) is essentially an operator driving the evolution of a single particle on the lattice, through local unitaries. Some QWs admit a continuum limit, leading to familiar PDEs (e.g. the Dirac equation). Recently it was discovered that prior grouping and encoding allows for more general continuum limit equations (e.g. the Dirac equation in (1 + 1) curved spacetime). In this paper, we extend these results to arbitrary space dimension and internal degree of freedom. We recover an entire class of PDEs encompassing the massive Dirac equation in (3 + 1) curved spacetime. This means that the metric field can be represented by a field of local unitaries over a lattice.
Type de document :
Article dans une revue
Quantum Information and Computation, 2017, 17 (9-10), pp.0810--0824
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01785463
Contributeur : Kévin Perrot <>
Soumis le : lundi 7 mai 2018 - 15:39:17
Dernière modification le : mardi 27 novembre 2018 - 01:11:57
Document(s) archivé(s) le : lundi 24 septembre 2018 - 19:34:00

Fichier

1609.00305.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01785463, version 1

Collections

Citation

Pablo Arrighi, F. Facchini. Quantum walking in curved spacetime: (3+1) dimensions, and beyond. Quantum Information and Computation, 2017, 17 (9-10), pp.0810--0824. 〈hal-01785463〉

Partager

Métriques

Consultations de la notice

51

Téléchargements de fichiers

10