Quantum causal graph dynamics

Abstract : Consider a graph having quantum systems lying at each node. Suppose that the whole thing evolves in discrete time steps, according to a global, unitary causal operator. By causal we mean that information can only propagate at a bounded speed, with respect to the distance given by the graph. Suppose, moreover, that the graph itself is subject to the evolution, and may be driven to be in a quantum superposition of graphs—in accordance to the superposition principle. We show that these unitary causal operators must decompose as a finite-depth circuit of local unitary gates. This unifies a result on Quantum Cellular Automata with another on Reversible Causal Graph Dynamics. Along the way we formalize a notion of causality which is valid in the context of quantum superpositions of time-varying graphs, and has a number of good properties.
Type de document :
Article dans une revue
Physical Review D, American Physical Society, 2017, 96 (2), pp.024026
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

Contributeur : Kévin Perrot <>
Soumis le : lundi 7 mai 2018 - 15:30:09
Dernière modification le : lundi 14 mai 2018 - 10:12:27
Document(s) archivé(s) le : mardi 25 septembre 2018 - 04:34:18


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01785461, version 1


Pablo Arrighi, Simon Martiel. Quantum causal graph dynamics. Physical Review D, American Physical Society, 2017, 96 (2), pp.024026. 〈hal-01785461〉



Consultations de la notice


Téléchargements de fichiers