Optimization of computational budget for power system risk assessment

Benjamin Donnot 1, 2, 3 Isabelle Guyon 1, 2, 4 Antoine Marot 3 Marc Schoenauer 2, 1 Patrick Panciatici 3
1 TAU - TAckling the Underspecified
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : We address the problem of maintaining high voltage power transmission networks in security at all time, namely anticipating exceeding of thermal limit for eventual single line disconnection (whatever its cause may be) by running slow, but accurate, physical grid simulators. New conceptual frameworks are calling for a probabilistic risk-based security criterion. However, these approaches suffer from high requirements in terms of tractability. Here, we propose a new method to assess the risk. This method uses both machine learning techniques (artificial neural networks) and more standard simulators based on physical laws. More specifically we train neural networks to estimate the overall dangerousness of a grid state. A classical benchmark problem (manpower 118 buses test case) is used to show the strengths of the proposed method.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01783685
Contributeur : Benjamin Donnot <>
Soumis le : jeudi 3 mai 2018 - 10:32:06
Dernière modification le : jeudi 7 février 2019 - 10:26:02
Document(s) archivé(s) le : lundi 24 septembre 2018 - 17:55:11

Fichiers

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01783685, version 1
  • ARXIV : 1805.01174

Citation

Benjamin Donnot, Isabelle Guyon, Antoine Marot, Marc Schoenauer, Patrick Panciatici. Optimization of computational budget for power system risk assessment. 2018. 〈hal-01783685〉

Partager

Métriques

Consultations de la notice

359

Téléchargements de fichiers

49