Bijections of geodesic lamination space preserving left Hausdorff convergence

Abstract : We introduce an asymmetric distance function, which we call the ``left Hausdorff distance function", on the space of geodesic laminations on a closed hyperbolic surface of genus at least 2. This distance is an asymmetric version of the Hausdorff distance between compact subsets of a metric space. We prove a rigidity result for the action of the extended mapping class group of the surface on the space of geodesic laminations equipped with the topology induced from this distance. More specifically, we prove that there is a natural homomorphism from the extended mapping class group into the group of bijections of the space of geodesic laminations that preserve left Hausdorff convergence and that this homomorphism is an isomorphism.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01782032
Contributeur : Athanase Papadopoulos <>
Soumis le : mardi 11 décembre 2018 - 05:13:53
Dernière modification le : mercredi 12 décembre 2018 - 01:22:13

Fichiers

hausdorff-8.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01782032, version 2
  • ARXIV : 1805.00764

Collections

Citation

Ken'Ichi Ohshika, Athanase Papadopoulos. Bijections of geodesic lamination space preserving left Hausdorff convergence. 2018. 〈hal-01782032v2〉

Partager

Métriques

Consultations de la notice

41

Téléchargements de fichiers

8