Optimal Transport Approximation of Measures

Abstract : We propose a fast and scalable algorithm to project a given density on a set of structured measures. The measures can be discrete or supported on curves for instance. The proposed principle and algorithm are a natural generalization of previous results revolving around the generation of blue-noise point distributions, such as Lloyd's algorithm or more advanced techniques based on power diagrams. We provide a comprehensive convergence theory together with new approaches to accelerate the generation of point distributions. We also design new algorithms to project curves onto spaces of curves with bounded length and curvature or speed and acceleration. We illustrate the algorithm's interest through applications in advanced sampling theory, non-photorealistic rendering and path planning.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

Littérature citée [58 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01773993
Contributeur : Léo Lebrat <>
Soumis le : lundi 23 avril 2018 - 13:00:30
Dernière modification le : vendredi 26 octobre 2018 - 10:28:42
Document(s) archivé(s) le : mercredi 19 septembre 2018 - 03:12:48

Fichier

ms.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01773993, version 1

Citation

Frédéric De Gournay, Jonas Kahn, Léo Lebrat, Pierre Weiss. Optimal Transport Approximation of Measures. 2018. 〈hal-01773993〉

Partager

Métriques

Consultations de la notice

119

Téléchargements de fichiers

134