On density of subgraphs of halved cubes - Archive ouverte HAL Accéder directement au contenu
Pré-Publication, Document De Travail Année : 2018

On density of subgraphs of halved cubes

Résumé

Let $\mathcal S$ be a family of subsets of a set $X$ of cardinality $m$ and $\text{VC-dim}(\mathcal S)$ be the Vapnik-Chervonenkis dimension of $\mathcal S$. Haussler, Littlestone, and Warmuth (Inf. Comput., 1994) proved that if $G_1(\mathcal S)=(V,E)$ is the subgraph of the hypercube $Q_m$ induced by $\mathcal S$ (called the 1-inclusion graph of $\mathcal S$), then $\frac{|E|}{|V|}\le \text{VC-dim}({\mathcal S})$. Haussler (J. Combin. Th. A, 1995) presented an elegant proof of this inequality using the shifting operation. In this note, we adapt the shifting technique to prove that if $\mathcal S$ is an arbitrary set family and $G_{1,2}(\mathcal S)=(V,E)$ is the 1,2-inclusion graph of $\mathcal S$ (i.e., the subgraph of the square $Q^2_m$ of the hypercube $Q_m$ induced by $\mathcal S$), then $\frac{|E|}{|V|}\le \binom{d}{2}$, where $d:=\text{cVC-dim}^*(\mathcal S)$ is the clique-VC-dimension of $\mathcal S$ (which we introduce in this paper). The 1,2-inclusion graphs are exactly the subgraphs of halved cubes and comprise subgraphs of Johnson graphs as a subclass.

Dates et versions

hal-01772597 , version 1 (20-04-2018)

Identifiants

Citer

Victor Chepoi, Arnaud Labourel, Sébastien Ratel. On density of subgraphs of halved cubes. 2018. ⟨hal-01772597⟩
29 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More