MaxMin Linear Initialization for Fuzzy C-Means

Abstract : Clustering is an extensive research area in data science. The aim of clustering is to discover groups and to identify interesting patterns in datasets. Crisp (hard) clustering considers that each data point belongs to one and only one cluster. However, it is inadequate as some data points may belong to several clusters, as is the case in text categorization. Thus, we need more flexible clustering. Fuzzy clustering methods, where each data point can belong to several clusters, are an interesting alternative. Yet, seeding iterative fuzzy algorithms to achieve high quality clustering is an issue. In this paper, we propose a new linear and efficient initialization algorithm MaxMin Linear to deal with this problem. Then, we validate our theoretical results through extensive experiments on a variety of numerical real-world and artificial datasets. We also test several validity indices, including a new validity index that we propose, Transformed Standardized Fuzzy Difference (TSFD).
Type de document :
Communication dans un congrès
IBaI. 14th International Conference on Machine Learning and Data Mining (MLDM 2018), Jul 2018, New York, United States. Springer, Lecture Notes in Artificial Intelligence, 10934, pp.1-15, 2018, Machine Learning and Data Mining in Pattern Recognition. 〈http://www.mldm.de〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01771204
Contributeur : Jérôme Darmont <>
Soumis le : lundi 30 juillet 2018 - 16:32:58
Dernière modification le : mercredi 31 octobre 2018 - 12:24:26
Document(s) archivé(s) le : mercredi 31 octobre 2018 - 14:21:47

Fichiers

MLDM2018.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01771204, version 1
  • ARXIV : 1808.00197

Collections

Citation

Aybükë Oztürk, Stéphane Lallich, Jérôme Darmont, Sylvie Yona Waksman. MaxMin Linear Initialization for Fuzzy C-Means. IBaI. 14th International Conference on Machine Learning and Data Mining (MLDM 2018), Jul 2018, New York, United States. Springer, Lecture Notes in Artificial Intelligence, 10934, pp.1-15, 2018, Machine Learning and Data Mining in Pattern Recognition. 〈http://www.mldm.de〉. 〈hal-01771204〉

Partager

Métriques

Consultations de la notice

92

Téléchargements de fichiers

15