Visual odometry using a homography formulation with decoupled rotation and translation estimation using minimal solutions

Abstract : In this paper we present minimal solutions for two-view relative motion estimation based on a homography formulation. By assuming a known vertical direction (e.g. from an IMU) and assuming a dominant ground plane we demonstrate that rotation and translation estimation can be decoupled. This result allows us to reduce the number of point matches needed to compute a motion hypothesis. We then derive different algorithms based on this decoupling that allow an efficient estimation. We also demonstrate how these algorithms can be used efficiently to compute an optimal inlier set using exhaustive search or histogram voting instead of a traditional RANSAC step. Our methods are evaluated on synthetic data and on the KITTI data set, demonstrating that our methods are well suited for visual odometry in road driving scenarios.
Type de document :
Communication dans un congrès
International Conference on Robotics and Automation - ICRA, May 2018, Brisbane, Australia
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01756773
Contributeur : Cédric Demonceaux <>
Soumis le : mardi 3 avril 2018 - 08:41:20
Dernière modification le : vendredi 8 juin 2018 - 14:50:26

Fichier

ICRA2018_FinalVersion.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01756773, version 1

Citation

Banglei Guan, Pascal Vasseur, Cédric Demonceaux, Friedrich Fraundorfer. Visual odometry using a homography formulation with decoupled rotation and translation estimation using minimal solutions. International Conference on Robotics and Automation - ICRA, May 2018, Brisbane, Australia. 〈hal-01756773〉

Partager

Métriques

Consultations de la notice

116

Téléchargements de fichiers

157