Universal features of price formation in financial markets: perspectives from Deep Learning

Abstract : Using a large-scale Deep Learning approach applied to a high-frequency database containing billions of electronic market quotes and transactions for US equities, we uncover nonparametric evidence for the existence of a universal and stationary price formation mechanism relating the dynamics of supply and demand for a stock, as revealed through the order book, to subsequent variations in its market price. We assess the model by testing its out-of-sample predictions for the direction of price moves given the history of price and order flow, across a wide range of stocks and time periods. The universal price formation model exhibits a remarkably stable out-of-sample prediction accuracy across time, for a wide range of stocks from different sectors. Interestingly, these results also hold for stocks which are not part of the training sample, showing that the relations captured by the model are universal and not asset-specific. The universal model — trained on data from all stocks — outperforms, in terms of out-of-sample prediction accuracy, asset-specific linear and nonlinear models trained on time series of any given stock, showing that the universal nature of price formation weighs in favour of pooling together financial data from various stocks, rather than designing asset-or sector-specific models as commonly done. Standard data normal-izations based on volatility, price level or average spread, or partitioning the training data into sectors or categories such as large/small tick stocks, do not improve training results. On the other hand, inclusion of price and order flow history over many past observations improves forecasting performance, showing evidence of path-dependence in price dynamics.
Complete list of metadatas

Cited literature [14 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01754054
Contributor : Rama Cont <>
Submitted on : Friday, March 30, 2018 - 8:54:40 AM
Last modification on : Thursday, August 1, 2019 - 2:12:06 PM

File

DeepLearningContSirignano2018....
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01754054, version 1

Citation

Justin Sirignano, Rama Cont. Universal features of price formation in financial markets: perspectives from Deep Learning. 2018. ⟨hal-01754054⟩

Share

Metrics

Record views

18

Files downloads

159