Balanced representations, the asymptotic Plancherel formula, and Lusztig's conjectures for C2

Abstract : We prove Lusztig's conjectures P1–P15 for the affine Weyl group of type˜ C2 for all choices of positive weight function. Our approach to computing Lusztig's a-function is based on the notion of a " balanced system of cell representations ". Once this system is established roughly half of the conjectures P1–P15 follow. Next we establish an " asymptotic Plancherel Theorem " for type C2, from which the remaining conjectures follow. Combined with existing results in the literature this completes the proof of Lusztig's conjectures for all rank 1 and 2 affine Weyl groups for all choices of parameters.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

Littérature citée [36 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01745431
Contributeur : Jeremie Guilhot <>
Soumis le : mercredi 28 mars 2018 - 11:06:25
Dernière modification le : vendredi 13 avril 2018 - 01:39:21

Fichier

Lusztig_Conjectures_C2_final.p...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01745431, version 1

Collections

Citation

Jeremie Guilhot, James Parkinson. Balanced representations, the asymptotic Plancherel formula, and Lusztig's conjectures for C2. 2018. 〈hal-01745431〉

Partager

Métriques

Consultations de la notice

10

Téléchargements de fichiers

5