Polarization conversion in plasmonic nanoantennas for metasurfaces using structural asymmetry and mode hybridization - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Scientific Reports Année : 2017

Polarization conversion in plasmonic nanoantennas for metasurfaces using structural asymmetry and mode hybridization

Résumé

Polarization control using single plasmonic nanoantennas is of interest for subwavelength optical components in nano-optical circuits and metasurfaces. Here, we investigate the role of two mechanisms for polarization conversion by plasmonic antennas: Structural asymmetry and plasmon hybridization through strong coupling. As a model system we investigate L-shaped antennas consisting of two orthogonal nanorods which lengths and coupling strength can be independently controlled. An analytical model based on field susceptibilities is developed to extract key parameters and to address the influence of antenna morphology and excitation wavelength on polarization conversion efficiency and scattering intensities. Optical spectroscopy experiments performed on individual antennas, further supported by electrodynamical simulations based on the Green Dyadic Method, confirm the trends extracted from the analytical model. Mode hybridization and structural asymmetry allow addressing different input polarizations and wavelengths, providing additional degrees of freedom for agile polarization conversion in nanophotonic devices.
Fichier principal
Vignette du fichier
srep40906.pdf (1.12 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01739803 , version 1 (24-06-2019)

Identifiants

Citer

Peter Wiecha, Leo-Jay Black, Yudong Wang, Vincent Paillard, Christian Girard, et al.. Polarization conversion in plasmonic nanoantennas for metasurfaces using structural asymmetry and mode hybridization. Scientific Reports, 2017, 7 (1), pp.40906. ⟨10.1038/srep40906⟩. ⟨hal-01739803⟩
79 Consultations
60 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More