An Iterated Local Search to find many solutions of the 6-states Firing Squad Synchronization Problem

Abstract : This paper proposes an optimization approach for solving a classical problem in cellular automata theory: the 6-states Firing Squad Synchronization Problem (FSSP). To this purpose, we introduce an original optimization function which quantifies the quality of solutions according only to the main goal of the problem without taking into account any side information about cellular automata computations. This function is used for a dedicated Iterated Local Search algorithm which finds several hundreds of new solutions of the FSSP. Note, that up to present only one human-designed solution was known which is optimal in time. Most of the new solutions found by our algorithm have lower complexity (in terms of number of transitions rules used). An analysis of the fitness landscape for FSSP explains why, counter-intuitively, local search strategy can achieve good results for FSSP.
Type de document :
Article dans une revue
Applied Soft Computing, Elsevier, 2018, 66, pp.449-461. 〈10.1016/j.asoc.2018.01.026〉
Liste complète des métadonnées

Littérature citée [43 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01738330
Contributeur : Sébastien Verel <>
Soumis le : mardi 20 mars 2018 - 14:25:18
Dernière modification le : mercredi 18 juillet 2018 - 20:11:27

Fichier

fsp-asoc-preprint.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Manuel Clergue, Sébastien Verel, Enrico Formenti. An Iterated Local Search to find many solutions of the 6-states Firing Squad Synchronization Problem. Applied Soft Computing, Elsevier, 2018, 66, pp.449-461. 〈10.1016/j.asoc.2018.01.026〉. 〈hal-01738330〉

Partager

Métriques

Consultations de la notice

113

Téléchargements de fichiers

40