A Visual Quality Index for Fuzzy C-Means

Abstract : Cluster analysis is widely used in the areas of machine learning and data mining. Fuzzy clustering is a particular method that considers that a data point can belong to more than one cluster. Fuzzy clustering helps obtain flexible clusters, as needed in such applications as text categorization. The performance of a clustering algorithm critically depends on the number of clusters, and estimating the optimal number of clusters is a challenging task. Quality indices help estimate the optimal number of clusters. However, there is no quality index that can obtain an accurate number of clusters for different datasets. Thence, in this paper, we propose a new cluster quality index associated with a visual, graph-based solution that helps choose the optimal number of clusters in fuzzy partitions. Moreover, we validate our theoretical results through extensive comparison experiments against state-of-the-art quality indices on a variety of numerical real-world and artificial datasets.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Ilias Maglogiannis; Vassilis Plagianakos. 14th International Conference on Artificial Intelligence Applications and Innovations (AIAI 2018), May 2018, Rhodes, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-519, pp.546-555, 2018, Artificial Intelligence Applications and Innovations. 〈http://easyconferences.eu/aiai2018/〉. 〈10.1007/978-3-319-92007-8_46〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01727426
Contributeur : Jérôme Darmont <>
Soumis le : mercredi 30 mai 2018 - 08:29:19
Dernière modification le : mercredi 19 septembre 2018 - 10:02:34
Document(s) archivé(s) le : vendredi 31 août 2018 - 14:44:11

Fichiers

A Visual Quality Index for Fuz...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Aybükë Oztürk, Stéphane Lallich, Jérôme Darmont. A Visual Quality Index for Fuzzy C-Means. Lazaros Iliadis; Ilias Maglogiannis; Vassilis Plagianakos. 14th International Conference on Artificial Intelligence Applications and Innovations (AIAI 2018), May 2018, Rhodes, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-519, pp.546-555, 2018, Artificial Intelligence Applications and Innovations. 〈http://easyconferences.eu/aiai2018/〉. 〈10.1007/978-3-319-92007-8_46〉. 〈hal-01727426〉

Partager

Métriques

Consultations de la notice

154

Téléchargements de fichiers

12