Hybrid discretization methods with adaptive yield surface detection for Bingham pipe flows

Abstract : We devise a hybrid low-order method for Bingham pipe flows, where the velocity is discretized by means of one unknown per mesh face and one unknown per mesh cell which can be eliminated locally by static condensation. The main advantages are local conservativity and the possibility to use polygonal/polyhedral meshes. We exploit this feature in the context of adaptive mesh refinement to capture the yield surface by means of local mesh refinement and possible coarsening. We consider the augmented Lagrangian method to solve iteratively the variational inequalities resulting from the discrete Bingham problem, using piecewise constant fields for the auxiliary variable and the associated Lagrange multiplier. Numerical results are presented in pipes with circular and eccentric annulus cross-section for different Bingham numbers.
Type de document :
Article dans une revue
Journal of Scientific Computing, Springer Verlag, 2018, 77 (3), pp.1424-1443. 〈10.1007/s10915-018-0745-3〉
Liste complète des métadonnées

Littérature citée [49 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01698983
Contributeur : Karol Cascavita <>
Soumis le : mardi 22 mai 2018 - 11:32:16
Dernière modification le : mercredi 20 février 2019 - 09:54:05
Document(s) archivé(s) le : mardi 25 septembre 2018 - 08:57:47

Fichier

HHO-Bi-reply.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Karol Cascavita, Jeremy Bleyer, Xavier Chateau, Alexandre Ern. Hybrid discretization methods with adaptive yield surface detection for Bingham pipe flows. Journal of Scientific Computing, Springer Verlag, 2018, 77 (3), pp.1424-1443. 〈10.1007/s10915-018-0745-3〉. 〈hal-01698983v3〉

Partager

Métriques

Consultations de la notice

264

Téléchargements de fichiers

131