Differential Calculus on h-Deformed Spaces

Abstract : We construct the rings of generalized differential operators on the h-deformed vector space of gl-type. In contrast to the q-deformed vector space, where the ring of differential operators is unique up to an isomorphism, the general ring of h-deformed differential operators Diffh,σ(n) is labeled by a rational function σ in n variables, satisfying an over-determined system of finite-difference equations. We obtain the general solution of the system and describe some properties of the rings Diffh,σ(n).
Type de document :
Article dans une revue
Symmetry, Integrability and Geometry : Methods and Applications, National Academy of Science of Ukraine, 2017, Special Issue on Recent Advances in Quantum Integrable Systems, 13 (13), pp.082. 〈10.3842/SIGMA.2017.082〉
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01696326
Contributeur : Stéphanie Suciu <>
Soumis le : vendredi 11 mai 2018 - 13:57:55
Dernière modification le : mardi 3 juillet 2018 - 13:06:02
Document(s) archivé(s) le : mardi 25 septembre 2018 - 08:51:58

Fichier

1704.05330.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Basile Herlemont, Oleg Ogievetsky. Differential Calculus on h-Deformed Spaces. Symmetry, Integrability and Geometry : Methods and Applications, National Academy of Science of Ukraine, 2017, Special Issue on Recent Advances in Quantum Integrable Systems, 13 (13), pp.082. 〈10.3842/SIGMA.2017.082〉. 〈hal-01696326〉

Partager

Métriques

Consultations de la notice

126

Téléchargements de fichiers

8