Coordination via Advection Dynamics in Nanonetworks with Molecular Communication

Abstract : A key challenge in nanonetworking is to develop a means of coordinating a large number of nanoscale devices. Molecular communication has emerged as a promising technique to assist in the coordination problem. Devices in molecular communication systems—once information molecules are released— are typically viewed as passive, not reacting chemically with the information molecules. While this is an accurate model in diffusion-limited links, it is not the only scenario. In particular, the dynamics of molecular communication systems are more generally governed by reaction-diffusion, where the reaction dynamics can also dominate. This leads to the notion of reaction-limited molecular communication systems, where the concentration profiles of information molecules and other chemical species depends largely on reaction kinetics. In this regime, the system can be approximated by a chemical reaction network. In this paper, we exploit this observation to design new protocols for both point-to-point links with feedback and networks for event detection. In particular, using connections between consensus and advection theory and reaction networks lead to simple characterizations of equilibrium concentrations, which yield simple—but accurate— design rules even for networks with a large number of devices.
Liste complète des métadonnées

Cited literature [19 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01696268
Contributor : Malcolm Egan <>
Submitted on : Tuesday, January 30, 2018 - 11:38:38 AM
Last modification on : Saturday, April 13, 2019 - 1:23:52 AM
Document(s) archivé(s) le : Friday, May 25, 2018 - 9:33:29 PM

File

ICC_EGAN_2018.pdf
Files produced by the author(s)

Identifiers

Citation

Malcolm Egan, Trang Mai, Trung Duong, Marco Di Renzo. Coordination via Advection Dynamics in Nanonetworks with Molecular Communication. ICC 2018 - IEEE International Conference on Communications, May 2018, Kansas City, United States. pp.1-6, ⟨10.1109/ICC.2018.8422573⟩. ⟨hal-01696268⟩

Share

Metrics

Record views

615

Files downloads

225