Infimal convolution spatiotemporal PET reconstruction using total variation based priors

Abstract : In this paper, we focus on spatiotemporal regularization of Positron Emission Tomography (PET) reconstruction. Through a minimization problem defined on a dynamic variational framework we consider regularizers based on total variation priors adapted to problems related to Poisson noise degradation. In particular, we consider spatiotemporal total variation and total generalized variation and their corresponding extensions to the infimal convolution regularization. The numerical solutions of the corresponding variational problems are performed using Primal-Dual Hybrid Gradient (PDHG) optimization methods under a diagonal preconditioning. We compare our numerical solutions with the standard Maximum Likelihood Expectation Maximization (MLEM) reconstruction for simulated dynamic brain data for different kind of radiotracers. Our results indicate that the infimal convolution approaches provide better reconstructions compared to the ground truth brain phantom.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

Littérature citée [38 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01694064
Contributeur : Maïtine Bergounioux <>
Soumis le : vendredi 26 janvier 2018 - 17:20:01
Dernière modification le : jeudi 3 mai 2018 - 15:26:02
Document(s) archivé(s) le : vendredi 25 mai 2018 - 15:43:42

Fichier

BPST_JMIV.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01694064, version 1

Citation

Maïtine Bergounioux, Evangelos Papoutsellis, Simon Stute, Clovis Tauber. Infimal convolution spatiotemporal PET reconstruction using total variation based priors. 2018. 〈hal-01694064〉

Partager

Métriques

Consultations de la notice

262

Téléchargements de fichiers

165