Unique perfect matchings and proof nets

Abstract : This paper establishes a bridge between linear logic and mainstream graph theory, building previous work by Retoré (2003). We show that the problem of correctness for MLL+Mix proof nets is equivalent to the problem of uniqueness of a perfect matching. By applying matching theory, we obtain new results for MLL+Mix proof nets: a linear-time correctness criterion, a quasi-linear sequentialization algorithm, and a characterization of the sub-polynomial complexity of the correctness problem. We also use graph algorithms to compute the dependency relation of Bagnol et al. (2015) and the kingdom ordering of Bellin (1997), and relate them to the notion of blossom which is central to combinatorial maximum matching algorithms.
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01692179
Contributeur : Lê Thành Dũng Nguyễn <>
Soumis le : mercredi 24 janvier 2018 - 17:34:51
Dernière modification le : mardi 24 avril 2018 - 17:20:12

Fichier

mix-pm.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01692179, version 1

Collections

Citation

Lê Thành Dũng Nguyễn. Unique perfect matchings and proof nets. 2018. 〈hal-01692179〉

Partager

Métriques

Consultations de la notice

171

Téléchargements de fichiers

39