Fast Bayesian Network Structure Learning using Quasi-Determinism Screening

Thibaud Rahier 1, 2 Sylvain Marié 1 Stéphane Girard 2 Florence Forbes 2
2 MISTIS - Modelling and Inference of Complex and Structured Stochastic Systems
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : Learning the structure of Bayesian networks from data is a NP-Hard problem that involves optimization over a super-exponential sized space. In this work, we show that in most real life datasets, a number of the arcs contained in the final structure can be pre-screened at low computational cost with a limited impact on the global graph score. We formalize the identification of these arcs via the notion of quasi-determinism, and propose an associated algorithm that narrows the structure learning task down to a subset of the original variables. We show, on diverse benchmark datasets, that this algorithm exhibits a significant decrease in computational time and complexity for only a little decrease in performance score.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [35 références]  Voir  Masquer  Télécharger
Contributeur : Thibaud Rahier <>
Soumis le : mercredi 24 janvier 2018 - 15:09:25
Dernière modification le : lundi 9 avril 2018 - 12:22:26
Document(s) archivé(s) le : jeudi 24 mai 2018 - 20:35:11


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01691217, version 2


Thibaud Rahier, Sylvain Marié, Stéphane Girard, Florence Forbes. Fast Bayesian Network Structure Learning using Quasi-Determinism Screening. 2018. 〈hal-01691217v2〉



Consultations de la notice


Téléchargements de fichiers