Enhancing Translation Language Models with Word Embedding for Information Retrieval

Jibril Frej 1, 2, 3, 4 Jean-Pierre Chevallet 1, 2, 4 Didier Schwab 1, 2, 3
Abstract : In this paper, we explore the usage of Word Embedding semantic resources for Information Retrieval (IR) task. This embedding, produced by a shallow neural network, have been shown to catch semantic similarities between words (Mikolov et al., 2013). Hence, our goal is to enhance IR Language Models by addressing the term mismatch problem. To do so, we applied the model presented in the paper Integrating and Evaluating Neural Word Embedding in Information Retrieval by Zuccon et al. (2015) that proposes to estimate the translation probability of a Translation Language Model using the cosine similarity between Word Embedding. The results we obtained so far did not show a statistically significant improvement compared to classical Language Model.
Type de document :
Communication dans un congrès
9ème Atelier Recherche d'Information SEmantique, Jul 2017, Caen, France. 2017
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01681311
Contributeur : Jibril Frej <>
Soumis le : jeudi 11 janvier 2018 - 15:14:23
Dernière modification le : mercredi 7 novembre 2018 - 13:32:03
Document(s) archivé(s) le : jeudi 3 mai 2018 - 16:05:35

Fichiers

Enhancing Translation Language...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01681311, version 1
  • ARXIV : 1801.03844

Citation

Jibril Frej, Jean-Pierre Chevallet, Didier Schwab. Enhancing Translation Language Models with Word Embedding for Information Retrieval. 9ème Atelier Recherche d'Information SEmantique, Jul 2017, Caen, France. 2017. 〈hal-01681311〉

Partager

Métriques

Consultations de la notice

132

Téléchargements de fichiers

62