Uniform definition of sets using relations and complement of Presburger Arithmetic

Arthur Milchior 1, 2
2 Automates et Applications [LIAFA]
LIAFA - Laboratoire d'informatique Algorithmique : Fondements et Applications
Abstract : In 1996, Michaux and Villemaire considered integer relations $R$ which are not definable in Presburger Arithmetic. That is, not definable in first-order logic over integers with the addition function and the order relation (FO[N,+,<]-definable relations). They proved that, for each such $R$, there exists a FO[N,+,<,$R$]-formula $\nu_{R}(x)$ which defines a set of integers which is not ultimately periodic, i.e. not FO[N,+,<]-definable. It is proven in this paper that the formula $\nu(x)$ can be chosen such that it does not depend on the interpretation of $R$. It is furthermore proven that $\nu(x)$ can be chosen such that it defines an expanding set. That is, an infinite set of integers such that the distance between two successive elements is not bounded.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01676721
Contributeur : Arthur Milchior <>
Soumis le : samedi 6 janvier 2018 - 06:05:02
Dernière modification le : vendredi 4 janvier 2019 - 17:33:36

Lien texte intégral

Identifiants

  • HAL Id : hal-01676721, version 1
  • ARXIV : 1611.03839

Collections

Citation

Arthur Milchior. Uniform definition of sets using relations and complement of Presburger Arithmetic. 2018. 〈hal-01676721〉

Partager

Métriques

Consultations de la notice

196