Recurrent Neural Networks to Correct Satellite Image Classification Maps

Emmanuel Maggiori 1 Guillaume Charpiat 2 Yuliya Tarabalka 1 Pierre Alliez 1
1 TITANE - Geometric Modeling of 3D Environments
CRISAM - Inria Sophia Antipolis - Méditerranée
2 TAU - TAckling the Underspecified
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : While initially devised for image categorization, convolutional neural networks (CNNs) are being increasingly used for the pixelwise semantic labeling of images. However, the proper nature of the most common CNN architectures makes them good at recognizing but poor at localizing objects precisely. This problem is magnified in the context of aerial and satellite image labeling, where a spatially fine object outlining is of paramount importance. Different iterative enhancement algorithms have been presented in the literature to progressively improve the coarse CNN outputs, seeking to sharpen object boundaries around real image edges. However, one must carefully design, choose and tune such algorithms. Instead, our goal is to directly learn the iterative process itself. For this, we formulate a generic iterative enhancement process inspired from partial differential equations, and observe that it can be expressed as a recurrent neural network (RNN). Consequently, we train such a network from manually labeled data for our enhancement task. In a series of experiments we show that our RNN effectively learns an iterative process that significantly improves the quality of satellite image classification maps.
Type de document :
Article dans une revue
IEEE Transactions on Geoscience and Remote Sensing, Institute of Electrical and Electronics Engineers, 2017, 55 (9), pp.4962-4971. 〈10.1109/TGRS.2017.2697453〉
Liste complète des métadonnées

Littérature citée [36 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01660764
Contributeur : Yuliya Tarabalka <>
Soumis le : lundi 11 décembre 2017 - 13:22:33
Dernière modification le : jeudi 7 février 2019 - 14:26:06

Fichier

rnn.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Emmanuel Maggiori, Guillaume Charpiat, Yuliya Tarabalka, Pierre Alliez. Recurrent Neural Networks to Correct Satellite Image Classification Maps. IEEE Transactions on Geoscience and Remote Sensing, Institute of Electrical and Electronics Engineers, 2017, 55 (9), pp.4962-4971. 〈10.1109/TGRS.2017.2697453〉. 〈hal-01660764〉

Partager

Métriques

Consultations de la notice

370

Téléchargements de fichiers

952