Dense Feature Matching Core for FPGA-based Smart Cameras

Abstract : Smart cameras are image/video acquisition devices that integrate image processing algorithms close to the image sensor, so they can deliver high-level information to a host computer or high-level decision process. In this context, a central issue is the implementation of complex and computationally intensive computer vision algorithms inside the camera fabric. For low-level processing, FPGA devices are excellent candidates because they support data paral-lelism with high data throughput. One computer vision algorithm highly promising for FPGA-based smart cameras is feature matching. Unfortunately, most previous feature matching formulations have inefficient FPGA implementations or deliver relatively poor information about the observed scene. In this work, we introduce a new feature-matching algorithm that aims for dense feature matching and at the same time straightforward FPGA implementation. We propose a new mathematical formulation that addressed the feature matching task as a feature tracking problem. We demonstrate that our algorithmic formulation delivers robust feature matching with low mathematical complexity and obtains accuracy superior to previous algorithmic formulations. An FPGA architecture is lay down and, hardware acceleration strategies are discussed. Finally , we applied our feature matching algorithm in a monocular-SLAM system. We show that our algorithmic formulation provides promising results under real world applications.
Type de document :
Communication dans un congrès
11th International Conference on Distributed Smart Cameras (ICDSC 2017), Sep 2017, Stanford, CA, United States. Proceedings of the 11th International Conference on Distributed Smart Cameras, pp.41-48, 〈10.1145/3131885.3131922〉
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01657267
Contributeur : Abiel Aguilar-González <>
Soumis le : mercredi 6 décembre 2017 - 15:14:47
Dernière modification le : mardi 11 septembre 2018 - 16:56:02

Fichier

sig-alternate-sample_2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Abiel Aguilar-González, Miguel Arias-Estrada, François Berry. Dense Feature Matching Core for FPGA-based Smart Cameras. 11th International Conference on Distributed Smart Cameras (ICDSC 2017), Sep 2017, Stanford, CA, United States. Proceedings of the 11th International Conference on Distributed Smart Cameras, pp.41-48, 〈10.1145/3131885.3131922〉. 〈hal-01657267〉

Partager

Métriques

Consultations de la notice

68

Téléchargements de fichiers

192