Clustering multi-relationnal TV data by diverting supervised ILP

Vincent Claveau 1
1 LinkMedia - Creating and exploiting explicit links between multimedia fragments
Inria Rennes – Bretagne Atlantique , IRISA_D6 - MEDIA ET INTERACTIONS
Abstract : Traditionally, clustering operates on data described by a fixed number of (usually numerical) features; this description schema is said propositional or attribute-value. Yet, when the data cannot be described in that way, usual data-mining or clustering algorithms are no longer suitable. In this paper, we consider the problem of discovering similar types of programs in TV streams. The TV data have two important characteristics: 1) they are multi-relational, that is to say with multiple relationships between features; 2) they require background knowledge external to their interpretation. To process the data, we use Inductive Logic Programming (ILP) [9]. In this paper, we show how to divert ILP to work unsupervised in this context: from artificial learning problems, we induce a notion of similarity between broadcasts, which is later used to perform the clustering. Experiments presented show the soundness of the approach, and thus open up many research avenues.
Type de document :
Communication dans un congrès
ILP 2017 - 27th International Conference on Inductive Logic Programming, Sep 2017, Orléans, France. pp.1-6, 2017, Proceedings of the 27th International Conference on Inductive Logic Programming
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01643977
Contributeur : Vincent Claveau <>
Soumis le : mardi 21 novembre 2017 - 18:37:50
Dernière modification le : mercredi 16 mai 2018 - 11:24:14

Fichier

Claveau_ILP_RNTI.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01643977, version 1

Citation

Vincent Claveau. Clustering multi-relationnal TV data by diverting supervised ILP. ILP 2017 - 27th International Conference on Inductive Logic Programming, Sep 2017, Orléans, France. pp.1-6, 2017, Proceedings of the 27th International Conference on Inductive Logic Programming. 〈hal-01643977〉

Partager

Métriques

Consultations de la notice

232

Téléchargements de fichiers

24