Text-based collaborative filtering for cold-start soothing and recommendation enrichment

Abstract : —The difficulty to deal with new users, items and the poor explainability of predictions are well-known weaknesses of collaborative filtering. Classically, the cold-start issue is tackled either by asking for user interaction or exploiting side information while additional explanations are often extracted afterwards in a standalone process. Here, we propose a text-based collabora-tive filtering recommender system which provides a framework to solve both issues. Our method extends a scalable text embedding technique to build a unified vector space where users and items are mapped. We show how to use this space in a collaborative filtering scheme and demonstrate the interest of our text-based method for cold start soothing and recommendation explanation. The suitability of our approach is backed by competitive results on rating prediction task.
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

Contributeur : Raphaël Fournier-S'Niehotta <>
Soumis le : lundi 20 novembre 2017 - 17:04:18
Dernière modification le : vendredi 7 décembre 2018 - 01:23:44
Document(s) archivé(s) le : mercredi 21 février 2018 - 14:05:24


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01640268, version 1


Charles-Emmanuel Dias, Vincent Guigue, Patrick Gallinari. Text-based collaborative filtering for cold-start soothing and recommendation enrichment. AISR2017, May 2017, Paris, France. 〈hal-01640268〉



Consultations de la notice


Téléchargements de fichiers