Intercalation and grafting of benzene derivatives into zinc-aluminum and copper-chromium layered double hydroxide hosts: An XPS monitoring study - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Physical Chemistry Chemical Physics Année : 2011

Intercalation and grafting of benzene derivatives into zinc-aluminum and copper-chromium layered double hydroxide hosts: An XPS monitoring study

Résumé

We report an original strategy to describe, via X-ray photoelectron spectroscopy (XPS) measurements, the interactions between the organic and the mineral sub-systems within a multifunctional hybrid material. A tunable layered double hydroxide (LDH) host system, either a Zn 2Al- or Cu 2Cr-hydrotalcite like compound, is modified with the insertion of the organic guest entities, 4-phenol-sulfonate (HBS) or -carboxylate (HBC). The resulting interactions are studied at two levels: after the organic molecules' insertion in the host LDH (ionic exchange between the LDH counter-ions and the organic anions) and after the condensation (grafting) of the organic species onto the mineral layers when thermally treated. For the inserted material, the main XPS results show a stabilization of the organic molecules within the mineral sheets via H bonding as found elsewhere with FTIR study, the mineral matrix being unchanged. The XPS signal of the organic molecules slightly changes with a widening of core peaks, attesting to some local surrounding modifications. When heating up the Zn 2Al hybrid material, stronger interactions between organic and inorganic systems appeared from around 80 °C with some obvious electronic changes as monitored with the XPS S2p signal of the HBS guest molecules. At the same time, the PXRD pattern clearly shows a decrease of the basal spacing according to a two step contraction process which could be interpreted as a progressive organic molecule condensation onto the inorganic layers via iono-covalent bonds. A copper-chromium LDH is also studied to probe the same kind of interactions with the HBS molecules. The ability of distortion of such mineral material involves a peculiar process of contraction from 40 °C with the immediate and effective anchorage of organic molecules. This journal is © the Owner Societies.
Fichier non déposé

Dates et versions

hal-01636415 , version 1 (16-11-2017)

Identifiants

Citer

S. Fleutot, Jean-Charles Dupin, G. Renaudin, Hervé Martinez. Intercalation and grafting of benzene derivatives into zinc-aluminum and copper-chromium layered double hydroxide hosts: An XPS monitoring study. Physical Chemistry Chemical Physics, 2011, 13 (39), pp.17564-17578. ⟨10.1039/c1cp20453j⟩. ⟨hal-01636415⟩
47 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More