Incremental Solid Modeling from Sparse and Omnidirectional Structure-from-Motion Data

Abstract : This paper introduces a sparse and incremental 2-manifold surface reconstruction method. It uses a sparse 3D point cloud generated by a Structure-from-Motion algorithm (SfM) as its main input as opposed to the more common dense algorithms. Furthermore, our method is incremental: the surface is updated for every new camera pose computed by SfM, and the update occurs in a small neighborhood of the new camera pose. Compared to the other surface reconstruction methods, our method has the advantage to have all these properties at the same time. The quality and execution time of the proposed algorithm is evaluated on a large scale (2.5 km.) real sequence taken in an urban environment, and the method is quantitatively evaluated on a synthetic urban scene.
Type de document :
Communication dans un congrès
British Machine Vision Conference, Sep 2013, Bristol, United Kingdom
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01635442
Contributeur : Maxime Lhuillier <>
Soumis le : mercredi 15 novembre 2017 - 11:06:13
Dernière modification le : mardi 9 octobre 2018 - 09:44:11
Document(s) archivé(s) le : vendredi 16 février 2018 - 13:57:53

Fichier

pBmvc13.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01635442, version 1

Citation

Vadim Litvinov, Maxime Lhuillier. Incremental Solid Modeling from Sparse and Omnidirectional Structure-from-Motion Data. British Machine Vision Conference, Sep 2013, Bristol, United Kingdom. 〈hal-01635442〉

Partager

Métriques

Consultations de la notice

36

Téléchargements de fichiers

44