HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Conference papers

Approche de Douglas-Rachford aléatoire par blocs appliquée à la régression logistique parcimonieuse

Abstract : We propose a stochastic optimization algorithm for logistic regression based on a randomized version of Douglas-Rachford splitting method. Our algorithm sweeps the training set by randomly selecting a mini-batch of data at each iteration, and it performs the update step by leveraging the proximity operator of the logistic loss, for which a closed-form expression is derived. Experiments carried out on standard datasets compare the efficiency of our algorithm to stochastic gradient-like methods.
Document type :
Conference papers
Complete list of metadata

Cited literature [22 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01634525
Contributor : Emilie Chouzenoux Connect in order to contact the contributor
Submitted on : Tuesday, November 14, 2017 - 11:25:40 AM
Last modification on : Thursday, January 20, 2022 - 5:29:25 PM
Long-term archiving on: : Thursday, February 15, 2018 - 2:13:07 PM

File

chouzenoux71_final.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01634525, version 1

Citation

Giovanni Chierchia, Afef Cherni, Emilie Chouzenoux, Jean-Christophe Pesquet. Approche de Douglas-Rachford aléatoire par blocs appliquée à la régression logistique parcimonieuse. GRETSI 2017, Sep 2017, Juan les Pins, France. pp.1-4. ⟨hal-01634525⟩

Share

Metrics

Record views

345

Files downloads

157