Token Jumping in minor-closed classes

Nicolas Bousquet 1 Arnaud Mary 2 Aline Parreau 3
1 G-SCOP_OC - OC
G-SCOP - Laboratoire des sciences pour la conception, l'optimisation et la production
3 GOAL - Graphes, AlgOrithmes et AppLications
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
Abstract : Given two $k$-independent sets $I$ and $J$ of a graph $G$, one can ask if it is possible to transform the one into the other in such a way that, at any step, we replace one vertex of the current independent set by another while keeping the property of being independent. Deciding this problem, known as the Token Jumping (TJ) reconfiguration problem, is PSPACE-complete even on planar graphs. Ito et al. proved in 2014 that the problem is FPT parameterized by $k$ if the input graph is $K_{3,\ell}$-free. We prove that the result of Ito et al. can be extended to any $K_{\ell,\ell}$-free graphs. In other words, if $G$ is a $K_{\ell,\ell}$-free graph, then it is possible to decide in FPT-time if $I$ can be transformed into $J$. As a by product, the TJ-reconfiguration problem is FPT in many well-known classes of graphs such as any minor-free class.
Type de document :
Communication dans un congrès
Ralf Klasing; Marc Zeitoun. Fundamentals of Computation Theory (FCT 2017), Sep 2017, Bordeaux, France. Springer, Fundamentals of Computation Theory. FCT 2017. Lecture Notes in Computer Science, vol 10472. Springer, Berlin, Heidelberg, 10472, pp.136-149, 2017, Lecture Notes in Computer Science. 〈http://fct2017.labri.fr/〉. 〈10.1007/978-3-662-55751-8_12〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01634505
Contributeur : Aline Parreau <>
Soumis le : mardi 14 novembre 2017 - 11:19:42
Dernière modification le : jeudi 15 novembre 2018 - 16:46:01

Lien texte intégral

Identifiants

Citation

Nicolas Bousquet, Arnaud Mary, Aline Parreau. Token Jumping in minor-closed classes. Ralf Klasing; Marc Zeitoun. Fundamentals of Computation Theory (FCT 2017), Sep 2017, Bordeaux, France. Springer, Fundamentals of Computation Theory. FCT 2017. Lecture Notes in Computer Science, vol 10472. Springer, Berlin, Heidelberg, 10472, pp.136-149, 2017, Lecture Notes in Computer Science. 〈http://fct2017.labri.fr/〉. 〈10.1007/978-3-662-55751-8_12〉. 〈hal-01634505〉

Partager

Métriques

Consultations de la notice

521