The Rao's distance between negative binomial distributions for Exploratory Analyses and Goodness-of-Fit Testing

Abstract : The statistical analysis of counts of living organisms brings information about the collective behavior of species (schooling, habitat preference, etc), possibly depending on their biological characteristics (growth rate, reproductive power, survival rate, etc). The negative binomial distribution (NB) is widely used to model such data but the parametric approach is ill-suited from an exploratory point of view. Indeed, the visual distance between parameters is not relevant, because it depends on the chosen parametrization! On the contrary, considering the Riemannian manifold N B(D R) of negative binomial distributions equipped with the Fisher-Rao metrics, it is possible to compute intrinsic distances between species. In this work, we focus on geometrical aspects of the χ 2 goodness-of-t (GOF) test for distributions in N B(D R), in connection with the position of the reference distribution. We show that this position is critical for performances of this test, as Critchley & Marriott (2016) noticed in a dierent setting.
Type de document :
Communication dans un congrès
61st World Statistics Congress - ISI2017, Jul 2017, Marrakech, Morocco
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01632444
Contributeur : Claude Manté <>
Soumis le : vendredi 10 novembre 2017 - 11:06:43
Dernière modification le : samedi 11 novembre 2017 - 01:11:05

Fichier

ContribCM.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01632444, version 1

Collections

Citation

Claude Manté. The Rao's distance between negative binomial distributions for Exploratory Analyses and Goodness-of-Fit Testing. 61st World Statistics Congress - ISI2017, Jul 2017, Marrakech, Morocco. 〈hal-01632444〉

Partager

Métriques

Consultations de la notice

50

Téléchargements de fichiers

4