On the (di)graphs with (directed) proper connection number two

Abstract : A coloring of a graph G is properly connected if every two vertices of G are the ends of a properly colored path. We study the complexity of computing the proper connection number (minimum number of colors in a properly connected coloring) for edge and vertex colorings, in undirected and directed graphs, respectively. First we disprove some conjectures of Magnant et al. (2016) on characterizing the strong digraphs with proper arc connection number at most two. Then, we prove that deciding whether a given digraph has proper arc connection number at most two is NP-complete. We initiate the study of proper vertex connectivity in digraphs and we prove similar results as for the arc version. Finally, we present polynomial-time recognition algorithms for bounded-treewidth graphs and bipartite graphs with proper edge connection number at most two.
Type de document :
Communication dans un congrès
IX Latin and American Algorithms, Graphs and Optimization Symposium (LAGOS), Sep 2017, Marseille, France. 62, pp.237 - 242, 2017, 〈10.1016/j.endm.2017.10.041〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01625042
Contributeur : Guillaume Ducoffe <>
Soumis le : vendredi 27 octobre 2017 - 09:50:56
Dernière modification le : dimanche 29 octobre 2017 - 01:08:51

Fichier

DMP-LAGOS17-finale.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Guillaume Ducoffe, Ruxandra Marinescu-Ghemeci, Alexandru Popa. On the (di)graphs with (directed) proper connection number two. IX Latin and American Algorithms, Graphs and Optimization Symposium (LAGOS), Sep 2017, Marseille, France. 62, pp.237 - 242, 2017, 〈10.1016/j.endm.2017.10.041〉. 〈hal-01625042〉

Partager

Métriques

Consultations de la notice

67

Téléchargements de fichiers

6