Cone-bounded feedback laws for m-dissipative operators on Hilbert spaces

Abstract : This work studies the influence of some constraints on a stabilizing feedback law. It is considered an abstract nonlinear control system for which we assume that there exists a linear feedback law that makes the origin of the closed-loop system globally asymptotically stable. This controller is then modified via a cone-bounded nonlinearity. A well-posedness and a stability theorems are stated. The first theorem is proved thanks to the Schauder fixed-point theorem, the second one with an infinite-dimensional version of LaSalle's Invariance Principle. These results are illustrated on a linear Korteweg-de Vries equation by some simulations and on a nonlinear heat equation.
Type de document :
Article dans une revue
Mathematics of Control, Signals, and Systems, Springer Verlag, 2017, 29 (4), pp.18. 〈10.1007/s00498-017-0205-x〉
Liste complète des métadonnées

Littérature citée [36 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01620024
Contributeur : Swann Marx <>
Soumis le : vendredi 20 octobre 2017 - 09:36:19
Dernière modification le : vendredi 15 février 2019 - 16:34:03
Document(s) archivé(s) le : dimanche 21 janvier 2018 - 12:53:05

Fichiers

mcss_resent.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Swann Marx, Vincent Andrieu, Christophe Prieur. Cone-bounded feedback laws for m-dissipative operators on Hilbert spaces. Mathematics of Control, Signals, and Systems, Springer Verlag, 2017, 29 (4), pp.18. 〈10.1007/s00498-017-0205-x〉. 〈hal-01620024〉

Partager

Métriques

Consultations de la notice

427

Téléchargements de fichiers

263