Assessment of subgrid-scale stress statistics in non-premixed turbulent wall-jet flames - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Turbulence Année : 2016

Assessment of subgrid-scale stress statistics in non-premixed turbulent wall-jet flames

Résumé

We investigate the heat-release effects on the characteristics of the subgrid-scale (SGS) stress tensor and SGS dissipation of kinetic energy and enstrophy. Direct numerical simulation data of a non-premixed reacting turbulent wall-jet flow with and without substantial heat release is employed for the analysis. This study comprises, among others, an analysis of the eigenvalues of the resolved strain rate and SGS stress tensors, to identify the heat-release effects on their topology. An assessment of the alignment between the eigenvectors corresponding to the largest eigenvalues of these two tensors is also given to provide further information for modelling of the SGS stress tensor. To find out the heat-release effects on the dynamics of the turbulent kinetic energy and enstrophy dissipation, probability density functions (PDFs) and mean values are analysed. The mean SGS shear stress and turbulent kinetic energy both slightly increase in the buffer layer and substantially decrease further away from the wall, due to the heat-release effects. Contrary to the kinetic energy, heat release decreases the mean SGS dissipation of enstrophy in the near-wall region. Moreover, differences in the shapes of the PDFs between the isothermal and exothermic cases indicate changes in the intermittency level of both SGS dissipations. Heat release also increases the SGS stress anisotropy in the near-wall region. Although, the structure of the mean resolved strain-rate tensor only marginally differs between the isothermal and exothermic cases in the near-wall region, substantial differences are observed in the jet area, where compressibility effects are important and heat-release effects are found to promote compression states. The differences in the relative alignment between the SGS stress and resolved strain-rate tensors in the isothermal and exothermic cases are discussed in connection with the differences in the SGS dissipation of kinetic energy.

Dates et versions

hal-01611207 , version 1 (05-10-2017)

Identifiants

Citer

Amin Rasam, Zeinab Pouransari, Luc Vervisch, Arne V. Johansson. Assessment of subgrid-scale stress statistics in non-premixed turbulent wall-jet flames. Journal of Turbulence, 2016, 17 (5), pp.471-490. ⟨10.1080/14685248.2015.1131284⟩. ⟨hal-01611207⟩
69 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More