A Minimax Optimal Algorithm for Crowdsourcing

Abstract : We consider the problem of accurately estimating the reliability of workers based on noisy labels they provide, which is a fundamental question in crowdsourcing. We propose a novel lower bound on the minimax estimation error which applies to any estimation procedure. We further propose Triangular Estimation (TE), an algorithm for estimating the reliability of workers. TE has low complexity, may be implemented in a streaming setting when labels are provided by workers in real time, and does not rely on an iterative procedure. We prove that TE is minimax optimal and matches our lower bound. We conclude by assessing the performance of TE and other state-of-the-art algorithms on both synthetic and real-world data.
Type de document :
Communication dans un congrès
NIPS, 2017, Los Angeles, United States
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

Contributeur : Thomas Bonald <>
Soumis le : vendredi 22 septembre 2017 - 16:00:22
Dernière modification le : vendredi 31 août 2018 - 09:12:07
Document(s) archivé(s) le : samedi 23 décembre 2017 - 14:00:16


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01592105, version 1


Thomas Bonald, Richard Combes. A Minimax Optimal Algorithm for Crowdsourcing. NIPS, 2017, Los Angeles, United States. 〈hal-01592105〉



Consultations de la notice


Téléchargements de fichiers