High-order absorbing boundary conditions with edge and corner compatibility for the Helmholtz equation

Axel Modave 1 Vanessa Mattesi 2 Christophe Geuzaine 2
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : We deal with the finite element solution of 3D time-harmonic acoustic wave problems defined on unbounded domains, but computed using cuboidal computational domains with artificial boundaries. We combine a standard finite element method for the Helmholtz equation with high-order absorbing boundary conditions (on the faces of the domain) and compatibility relations (on the edges and the corners) that provide an arbitrary high accuracy.
Document type :
Conference papers
Liste complète des métadonnées

Cited literature [1 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01588749
Contributor : Axel Modave <>
Submitted on : Saturday, September 16, 2017 - 10:57:43 PM
Last modification on : Thursday, February 7, 2019 - 5:49:34 PM
Document(s) archivé(s) le : Sunday, December 17, 2017 - 12:40:09 PM

File

Modave2017_ProcAcomen.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01588749, version 1

Citation

Axel Modave, Vanessa Mattesi, Christophe Geuzaine. High-order absorbing boundary conditions with edge and corner compatibility for the Helmholtz equation. ACOMEN 2017 - 7th International Conference on Advanced Computational Methods in Engineering, Sep 2017, Ghent, Belgium. ⟨hal-01588749⟩

Share

Metrics

Record views

375

Files downloads

90