A proof of the Conjecture of Lehmer and of the Conjecture of Schinzel-Zassenhaus

Jean-Louis Verger-Gaugry 1
1 Théorie des nombres
IF - Institut Fourier
Abstract : The conjecture of Lehmer is proved to be true. The proof mainly relies upon: (i) the properties of the Parry Upper functions f α (z) associated with the dynamical zeta functions ζ α (z) of the Rényi–Parry arithmetical dynamical systems, for α an algebraic integer α of house α greater than 1, (ii) the discovery of lenticuli of poles of ζ α (z) which uniformly equidistribute at the limit on a limit " lenticular " arc of the unit circle, when α tends to 1 + , giving rise to a continuous lenticular minorant M r (α) of the Mahler measure M(α), (iii) the Poincaré asymptotic expansions of these poles and of this minorant M_{r}(α) as a function of the dynamical degree. With the same arguments the conjecture of Schinzel-Zassenhaus is proved to be true. An inequality improving those of Dobrowolski and Voutier ones is obtained. The set of Salem numbers is shown to be bounded from below by the Perron number θ_{31}^{-1} = 1.08545. . ., dominant root of the trinomial −1 − z^{30} + z^{31}. Whether Lehmer's number is the smallest Salem number remains open. A lower bound for the Weil height of nonzero totally real algebraic numbers, /= ±1, is obtained (Bogomolov property). For sequences of algebraic integers of Mahler measure smaller than the smallest Pisot number, whose houses have a dynamical degree tending to infinity, the Galois orbit measures of conjugates are proved to converge towards the Haar measure on |z| = 1 (limit equidistribution).
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Contributeur : Jean-Louis Verger-Gaugry <>
Soumis le : lundi 11 septembre 2017 - 14:44:29
Dernière modification le : lundi 18 septembre 2017 - 11:10:07


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01584495, version 1



Jean-Louis Verger-Gaugry. A proof of the Conjecture of Lehmer and of the Conjecture of Schinzel-Zassenhaus. IF_PREPUB. 2017. <hal-01584495>



Consultations de
la notice


Téléchargements du document