Towards a function field version of Freiman's Theorem

Abstract : We discuss a multiplicative counterpart of Freiman's 3k−4 theorem in the context of a function field F over an algebraically closed field K. Such a theorem would give a precise description of subspaces S, such that the space S^2 spanned by products of elements of S satisfies dim S^ 2 ≤ 3 dimS − 4. We make a step in this direction by giving a complete characterisation of spaces S such that dimS^2 = 2 dimS. We show that, up to multiplication by a constant field element, such a space S is included in a function field of genus 0 or 1. In particular if the genus is 1 then this space is a Riemann-Roch space.
Type de document :
Article dans une revue
Algebraic Combinatorics, Akihiro Munemasa, Satoshi Murai, Hugh Thomas, Hendrik Van Maldeghem, 2018, 1 (4), pp.501-521. 〈10.5802/alco.19〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01584034
Contributeur : Alain Couvreur <>
Soumis le : vendredi 8 septembre 2017 - 11:26:26
Dernière modification le : mercredi 12 décembre 2018 - 01:18:34

Lien texte intégral

Identifiants

Données associées

Citation

Christine Bachoc, Alain Couvreur, Gilles Zémor. Towards a function field version of Freiman's Theorem. Algebraic Combinatorics, Akihiro Munemasa, Satoshi Murai, Hugh Thomas, Hendrik Van Maldeghem, 2018, 1 (4), pp.501-521. 〈10.5802/alco.19〉. 〈hal-01584034〉

Partager

Métriques

Consultations de la notice

513