Guaranteed error bounds on pointwise quantities of interest for transient viscodynamics problems

Abstract : A new method is developed to obtain guaranteed error bounds on pointwise quantities of interest for linear transient viscodynamics problems. The calculation of strict error bounds is based on the concept of “constitutive relation error” (CRE) and the solution of an adjoint problem. The central and original point of this work is the treatment of the singularity in space and time introduced by the loading of the adjoint problem. Hence, the adjoint solution is decomposed into two parts: (i) an analytical part determined from Green’s functions; (ii) a residual part approximated with classical numerical tools (finite element method, Newmark integration scheme). The capabilities and the limits of the proposed approach are analyzed on a 2D example.
Type de document :
Article dans une revue
Computational Mechanics, Springer Verlag, 2012, 49 (3), pp.291-307. 〈10.1007/s00466-011-0642-1〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01580631
Contributeur : Ludovic Chamoin <>
Soumis le : vendredi 1 septembre 2017 - 19:22:57
Dernière modification le : vendredi 22 mars 2019 - 15:22:21

Lien texte intégral

Identifiants

Collections

Citation

Julien Waeytens, Ludovic Chamoin, Pierre Ladevèze. Guaranteed error bounds on pointwise quantities of interest for transient viscodynamics problems. Computational Mechanics, Springer Verlag, 2012, 49 (3), pp.291-307. 〈10.1007/s00466-011-0642-1〉. 〈hal-01580631〉

Partager

Métriques

Consultations de la notice

66