Geometrically consistent approximations of the energy in the quasi-continuum framework

Abstract : This paper addresses the issue of consistent and generic energy-based passing from a discrete model with finite-range interactions to a surrogate discrete model with nearest neighbor interactions only. For this purpose, we introduce a transition zone that defines a volume interface between the two models and enables us to deal with incompatibilities between these models. Over the transition zone, a geometrically consistent approximation of the energy of the discrete system is defined; it sets up energies in an automatic manner and for a large set of configu- rations. In this framework, two possible schemes are then presented and analyzed, and performances of these schemes are compared on several numerical experiments in statics or dynamics regimes.
Type de document :
Article dans une revue
Computational Materials Science, Elsevier, 2014, 85, pp.280-294. 〈10.1016/j.commatsci.2014.01.010〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01580005
Contributeur : Ludovic Chamoin <>
Soumis le : jeudi 31 août 2017 - 23:11:54
Dernière modification le : samedi 23 mars 2019 - 01:29:37

Identifiants

Citation

Jérémy Marchais, Christian Rey, Ludovic Chamoin. Geometrically consistent approximations of the energy in the quasi-continuum framework. Computational Materials Science, Elsevier, 2014, 85, pp.280-294. 〈10.1016/j.commatsci.2014.01.010〉. 〈hal-01580005〉

Partager

Métriques

Consultations de la notice

65