Approximation of constrained problems using the PGD method with application to pure Neumann problems

Abstract : In this paper we introduce, analyze, and compare several approaches designed to incorporate a linear (or affine) constraint within the Proper Generalized Decomposition framework. We apply the considered methods and numerical strategies to two classes of problems: the pure Neumann case where the role of the constraint is to recover unicity of the solution; and the Robin case, where the constraint forces the solution to move away from the already existing unique global minimizer of the energy functional.
Type de document :
Article dans une revue
Computer Methods in Applied Mechanics and Engineering, Elsevier, 2017, 317, pp.507-525. 〈10.1016/j.cma.2016.12.023〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01579975
Contributeur : Ludovic Chamoin <>
Soumis le : jeudi 31 août 2017 - 20:29:27
Dernière modification le : mardi 3 juillet 2018 - 11:30:03

Identifiants

Citation

Kergrene Kenan, Serge Prudhomme, Ludovic Chamoin, Laforest Marc. Approximation of constrained problems using the PGD method with application to pure Neumann problems. Computer Methods in Applied Mechanics and Engineering, Elsevier, 2017, 317, pp.507-525. 〈10.1016/j.cma.2016.12.023〉. 〈hal-01579975〉

Partager

Métriques

Consultations de la notice

149