Stochastic Online Shortest Path Routing: The Value of Feedback

Abstract : This paper studies online shortest path routing over multi-hop networks. Link costs or delays are time-varying and modeled by independent and identically distributed random processes, whose parameters are initially unknown. The parameters, and hence the optimal path, can only be estimated by routing packets through the network and observing the realized delays. Our aim is to find a routing policy that minimizes the regret (the cumulative difference of expected delay) between the path chosen by the policy and the unknown optimal path. We formulate the problem as a combinatorial bandit optimization problem and consider several scenarios that differ in where routing decisions are made and in the information available when making the decisions. For each scenario, we derive a tight asymptotic lower bound on the regret that has to be satisfied by any online routing policy. These bounds help us to understand the performance improvements we can expect when (i) taking routing decisions at each hop rather than at the source only, and (ii) observing per-link delays rather than end-to-end path delays. In particular, we show that (i) is of no use while (ii) can have a spectacular impact. Three algorithms, with a trade-off between computational complexity and performance, are proposed. The regret upper bounds of these algorithms improve over those of the existing algorithms, and they significantly outperform state-of-the-art algorithms in numerical experiments.
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-01575796
Contributor : Richard Combes <>
Submitted on : Monday, August 21, 2017 - 4:43:07 PM
Last modification on : Wednesday, November 28, 2018 - 1:10:26 AM

Links full text

Identifiers

Citation

M. Sadegh Talebi, Zhenhua Zou, Richard Combes, Alexandre Proutiere, Mikael Johansson. Stochastic Online Shortest Path Routing: The Value of Feedback. IEEE Transactions on Automatic Control, Institute of Electrical and Electronics Engineers, 2017, 63 (4), pp.915 - 930. ⟨10.1109/TAC.2017.2747409⟩. ⟨hal-01575796⟩

Share

Metrics

Record views

155