Theta functions for lattices of SU(3) hyper-roots

Abstract : We recall the definition of the hyper-roots that can be associated to modules-categories over fusion categories defined by the choice of a simple Lie group G together with a positive integer k. This definition was proposed in 2000, using another language, by Adrian Ocneanu. If G = SU(2), the obtained hyper-roots coincide with the usual roots for ADE Dynkin diagrams. We consider the associated lattices when G = SU(3) and determine their theta functions in a number of cases; these functions can be expressed as modular forms twisted by appropriate Dirichlet characters.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01571963
Contributeur : Robert Coquereaux <>
Soumis le : vendredi 4 août 2017 - 10:26:12
Dernière modification le : samedi 5 août 2017 - 01:07:14

Identifiants

  • HAL Id : hal-01571963, version 1
  • ARXIV : 1708.00560

Collections

Citation

Robert Coquereaux. Theta functions for lattices of SU(3) hyper-roots. 2017. 〈hal-01571963〉

Partager

Métriques

Consultations de la notice

74