Automatic Design of Multi-Objective Local Search Algorithms: Case Study on a bi-objective Permutation Flowshop Scheduling Problem

Abstract : Multi-objective local search (MOLS) algorithms are efficient metaheuristics, which improve a set of solutions by using their neighbourhood to iteratively find better and better solutions. MOLS algorithms are versatile algorithms with many available strategies, first to select the solutions to explore, then to explore them, and finally to update the archive using some of the visited neighbours. In this paper, we propose a new generalisation of MOLS algorithms incorporating new recent ideas and algorithms. To be able to instantiate the many MOLS algorithms of the literature, our generalisation exposes numerous numerical and categorical parameters, raising the possibility of being automatically designed by an automatic algorithm configuration (AAC) mechanism. We investigate the worth of such an automatic design of MOLS algorithms using MO-ParamILS, a multi-objective AAC configurator, on the permutation flowshop scheduling problem, and demonstrate its worth against a traditional manual design.
Type de document :
Communication dans un congrès
Genetic and Evolutionary Computation Conference (GECCO 2017), Jul 2017, Berlin, Germany. Proceedings of the Genetic and Evolutionary Computation Conference GECCO'17 pp.227-234, 2017, 〈http://gecco-2017.sigevo.org〉. 〈10.1145/3071178.3071323〉
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01569617
Contributeur : Aymeric Blot <>
Soumis le : jeudi 27 juillet 2017 - 11:04:42
Dernière modification le : vendredi 19 janvier 2018 - 13:02:14

Fichier

gecco_2017_preprint.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Aymeric Blot, Laetitia Jourdan, Marie-Éléonore Kessaci. Automatic Design of Multi-Objective Local Search Algorithms: Case Study on a bi-objective Permutation Flowshop Scheduling Problem. Genetic and Evolutionary Computation Conference (GECCO 2017), Jul 2017, Berlin, Germany. Proceedings of the Genetic and Evolutionary Computation Conference GECCO'17 pp.227-234, 2017, 〈http://gecco-2017.sigevo.org〉. 〈10.1145/3071178.3071323〉. 〈hal-01569617〉

Partager

Métriques

Consultations de la notice

149

Téléchargements de fichiers

62