Incomplete 3D Motion Trajectory Segmentation and 2D-to-3D Label Transfer for Dynamic Scene Analysis

Abstract : The knowledge of the static scene parts and the moving objects in a dynamic scene plays a vital role for scene modelling, understanding, and landmark-based robot navigation. The key information for these tasks lies on semantic labels of the scene parts and the motion trajectories of the dynamic objects. In this work, we propose a method that segments the 3D feature trajectories based on their motion behaviours, and assigns them semantic labels using 2D-to-3D label transfer. These feature trajectories are constructed by using the proposed trajectory recovery algorithm which takes the loss of feature tracking into account. We introduce a complete framework for static-map and dynamic objects' reconstruction, as well as semantic scene understanding for a calibrated and moving 2D-3D camera setup. Our motion segmentation approach is faster by two orders of magnitude, while performing better than the state-of-the-art 3D motion segmentation methods, and successfully handles the previously discarded incomplete trajectory scenarios.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01569325
Contributeur : Cansen Jiang <>
Soumis le : mercredi 26 juillet 2017 - 15:08:38
Dernière modification le : jeudi 27 juillet 2017 - 01:05:53

Fichier

IROS17_Camera_Ready.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01569325, version 1

Collections

Citation

Cansen Jiang, Danda Paudel, Yohan Fougerolle, David Fofi, Cédric Demonceaux. Incomplete 3D Motion Trajectory Segmentation and 2D-to-3D Label Transfer for Dynamic Scene Analysis. 2017. <hal-01569325>

Partager

Métriques

Consultations de
la notice

51

Téléchargements du document

33