Variance-based sensitivity indices of computer models with dependent inputs: The Fourier Amplitude Sensitivity Test

Abstract : Several methods are proposed in the literature to perform the global sensitivity analysis of computer models with independent inputs. Only a few allow for treating the case of dependent inputs. In the present work, we investigate how to compute variance-based sensitivity indices with the Fourier amplitude sensitivity test. This can be achieved with the help of the inverse Rosenblatt transformation or the inverse Nataf transformation. We illustrate so on two distinct benchmarks. As compared to the recent Monte Carlo based approaches recently proposed by the same authors in Mara et al. (2015), the new approaches allow to divide by two the computational effort to assess the entire set of first-order and total-order variance-based sensitivity indices.
Type de document :
Article dans une revue
International Journal for Uncertainty Quantification, Begell House Publishers, 2017, 7 (6), pp.511-523. 〈10.1615/Int.J.UncertaintyQuantification.2017020291 〉
Liste complète des métadonnées

Littérature citée [38 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01568006
Contributeur : Thierry Mara <>
Soumis le : lundi 24 juillet 2017 - 17:09:22
Dernière modification le : vendredi 14 septembre 2018 - 08:16:33

Fichier

Tarantola_Mara_IJUQ2017.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Stefano Tarantola, Thierry A. Mara. Variance-based sensitivity indices of computer models with dependent inputs: The Fourier Amplitude Sensitivity Test. International Journal for Uncertainty Quantification, Begell House Publishers, 2017, 7 (6), pp.511-523. 〈10.1615/Int.J.UncertaintyQuantification.2017020291 〉. 〈hal-01568006〉

Partager

Métriques

Consultations de la notice

215

Téléchargements de fichiers

256