H. Lopez, J. Gachelin, C. Douarche, H. Auradou, and E. Clement, Turning Bacteria Suspensions into Superfluids, Physical Review Letters, vol.92, issue.2, p.28301, 2015.
DOI : 10.1073/pnas.0910426107

A. Doostmohammadi, S. Thampi, and J. Yeomans, Defect-Mediated Morphologies in Growing Cell Colonies, Physical Review Letters, vol.30, issue.4, p.48102, 2016.
DOI : 10.1073/pnas.1504762112

URL : http://arxiv.org/abs/1601.04489

S. Branda, A. Vik, L. Friedman, and R. Kolter, Biofilms: the matrix revisited, Trends in Microbiology, vol.13, issue.1, p.20, 2005.
DOI : 10.1016/j.tim.2004.11.006

P. Sanchez-vizuete, L. Coq, D. Bridier, A. Herry, J. Aymerich et al., as a New Bacillus subtilis Biofilm Determinant That Mediates the Protection of Staphylococcus aureus against Antimicrobial Agents in Mixed-Species Communities, Applied and Environmental Microbiology, vol.81, issue.1, p.109, 2015.
DOI : 10.1128/AEM.02473-14

URL : https://hal.archives-ouvertes.fr/hal-01140621

A. Persat, C. Nadell, M. Kim, F. Ingremeau, A. Siryaporn et al., The Mechanical World of Bacteria, Cell, vol.161, issue.5, p.988, 2015.
DOI : 10.1016/j.cell.2015.05.005

S. Lecuyer, R. Stocker, and R. Rusconi, Focus on the physics of biofilms, New Journal of Physics, vol.17, issue.3, p.30401, 2015.
DOI : 10.1088/1367-2630/17/3/030401

T. Guélon, J. Mathias, P. Stoodley, and . Springer-verlag, Advances in Biofilm Mechanics, Biofilm Highlights, p.111, 2011.
DOI : 10.1007/978-3-642-19940-0_6

S. Aguayo and L. Bozec, Mechanics of Bacterial Cells and Initial Surface Colonisation, Adv Exp Med Biol, vol.2, issue.7, pp.245-260, 2016.
DOI : 10.1089/wound.2012.0381

S. Dhahri, R. M. Marlière, and C. , In-Situ Determination of the Mechanical Properties of Gliding or Non-Motile Bacteria by Atomic Force Microscopy under Physiological Conditions without Immobilization, PLoS ONE, vol.49, issue.4, p.61663, 2013.
DOI : 10.1371/journal.pone.0061663.t003

URL : https://hal.archives-ouvertes.fr/hal-00769765

C. Formosa, M. Grare, R. Duval, and E. Dague, Nanoscale effects of antibiotics on P. aeruginosa, Nanomedicine: Nanotechnology, Biology and Medicine, vol.8, issue.1, pp.12-16, 2012.
DOI : 10.1016/j.nano.2011.09.009

A. Pelling, Y. Li, W. Shi, and J. Gimzewski, Nanoscale visualization and characterization of Myxococcus xanthus cells with atomic force microscopy, Proceedings of the National Academy of Sciences, vol.56, issue.9, p.6484, 2005.
DOI : 10.1103/PhysRevLett.56.930

G. Francius, P. Polyakov, M. J. Abe, Y. Ghigo, J. Merlin et al., Bacterial Surface Appendages Strongly Impact Nanomechanical and Electrokinetic Properties of Escherichia coli Cells Subjected to Osmotic Stress, PLoS ONE, vol.95, issue.97, p.20066, 2011.
DOI : 10.1371/journal.pone.0020066.s008

URL : https://hal.archives-ouvertes.fr/pasteur-01393507

C. Dombrowski, W. Kan, M. Motaleb, N. Charon, R. Goldstein et al., The Elastic Basis for the Shape of Borrelia burgdorferi, Biophysical Journal, vol.96, issue.11, pp.4409-4417, 2009.
DOI : 10.1016/j.bpj.2009.02.066

X. Sun, W. Weinlandt, H. Patel, M. Wu, and C. Hernandez, A microfluidic platform for profiling biomechanical properties of bacteria, Lab Chip, vol.107, issue.14, pp.2491-2498, 2014.
DOI : 10.1073/pnas.0911517107

R. Turner, W. Vollmer, and S. Foster, Different walls for rods and balls: the diversity of peptidoglycan, Molecular Microbiology, vol.30, issue.5, pp.862-874, 2014.
DOI : 10.1139/m84-083

K. Daly, K. Huang, N. Wingreen, and R. Mukhopadhyay, Mechanics of membrane bulging during cell-wall disruption in Gram-negative bacteria, Physical Review E, vol.178, issue.4, p.41922, 2011.
DOI : 10.1063/1.339285

S. Cayley, D. Guttman, H. , T. R. Jr, and M. , Biophysical Characterization of Changes in Amounts and Activity of Escherichia coli Cell and Compartment Water and Turgor Pressure in Response to Osmotic Stress, Biophysical Journal, vol.78, issue.4, pp.1748-1764, 2000.
DOI : 10.1016/S0006-3495(00)76726-9

R. Dover, A. Bitler, E. Shimoni, P. Trieu-cuot, and Y. Shai, Multiparametric AFM reveals turgor-responsive net-like peptidoglycan architecture in live streptococci, Nature Communications, vol.10, p.7193, 2015.
DOI : 10.1371/journal.pcbi.1003475

URL : https://hal.archives-ouvertes.fr/pasteur-01299766

T. Liu, Y. Lin, C. Hung, T. Liu, Y. Chen et al., A High Speed Detection Platform Based on Surface-Enhanced Raman Scattering for Monitoring Antibiotic-Induced Chemical Changes in Bacteria Cell Wall, PLoS ONE, vol.105, issue.5, p.5470, 2009.
DOI : 10.1371/journal.pone.0005470.g005

E. Rojas, J. Theriot, and K. Huang, Response of Escherichia coli growth rate to osmotic shock, Proceedings of the National Academy of Sciences, vol.111, issue.12, pp.7807-7812
DOI : 10.1073/pnas.1313826111

L. Nguyen, J. Gumbart, M. Beeby, and G. Jensen, Coarse-grained simulations of bacterial cell wall growth reveal that local coordination alone can be sufficient to maintain rod shape, Proceedings of the National Academy of Sciences, vol.175, issue.1, pp.3689-3698
DOI : 10.1021/bi051533t

L. Jones, R. Carballido-lópez, and J. Errington, Control of Cell Shape in Bacteria, Cell, vol.104, issue.6, pp.913-922, 2001.
DOI : 10.1016/S0092-8674(01)00287-2

R. Daniel and J. Errington, Control of Cell Morphogenesis in Bacteria, Cell, vol.113, issue.6, pp.767-776, 2003.
DOI : 10.1016/S0092-8674(03)00421-5

E. Garner, R. Bernard, W. Wang, X. Zhuang, D. Rudner et al., Coupled, Circumferential Motions of the Cell Wall Synthesis Machinery and MreB Filaments in B. subtilis, Science, vol.190, issue.11, pp.222-225, 2011.
DOI : 10.1128/JB.00207-08

S. Van-teeffelen, S. Wang, L. Furchtgott, K. Huang, N. Wingreen et al., The bacterial actin MreB rotates, and rotation depends on cell-wall assembly, Proceedings of the National Academy of Sciences, vol.108, issue.6, pp.15822-15827, 2011.
DOI : 10.1073/pnas.1018556108

J. Thwaites and N. Mendelson, Mechanical properties of peptidoglycan as determined from bacterial thread, International Journal of Biological Macromolecules, vol.11, issue.4, pp.201-206, 1989.
DOI : 10.1016/0141-8130(89)90069-X

Y. Deng, M. Sun, and J. Shaevitz, Direct Measurement of Cell Wall Stress Stiffening and Turgor Pressure in Live Bacterial Cells, Physical Review Letters, vol.171, issue.15, pp.158101-158102, 2011.
DOI : 10.1073/pnas.0911517107

X. Zhou, D. Halladin, E. Rojas, E. Koslover, T. Lee et al., Mechanical crack propagation drives millisecond daughter cell separation in Staphylococcus aureus, Science, vol.14, issue.7, pp.574-578, 2015.
DOI : 10.1002/0471142727.mb1420s92

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4864021

I. Booth, Bacterial mechanosensitive channels: progress towards an understanding of their roles in cell physiology, Current Opinion in Microbiology, vol.18, pp.16-22, 2014.
DOI : 10.1016/j.mib.2014.01.005

M. Reuter, N. Hayward, S. Black, S. Miller, D. Dryden et al., Mechanosensitive channels and bacterial cell wall integrity: does life end with a bang or a whimper?, Journal of The Royal Society Interface, vol.116, issue.1, p.20130850, 2014.
DOI : 10.1063/1.1475756

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869158

E. Evans and F. Ludwig, Dynamic strengths of molecular anchoring and material cohesion in fluid biomembranes, Journal of Physics: Condensed Matter, vol.12, issue.8A, p.315, 2000.
DOI : 10.1088/0953-8984/12/8A/341

M. Boer, A. Anishkin, and S. Sukharev, : The Question of Time, Biochemistry, vol.50, issue.19, pp.4087-4096, 2011.
DOI : 10.1021/bi1019435

T. Pilizota and J. Shaevitz, Plasmolysis and Cell Shape Depend on Solute Outer-Membrane Permeability during Hyperosmotic Shock in E.??coli, Biophysical Journal, vol.104, issue.12, pp.2733-2742, 2013.
DOI : 10.1016/j.bpj.2013.05.011

URL : http://doi.org/10.1016/j.bpj.2013.05.011

J. Zakrisson, B. Singh, P. Svenmarker, K. Wiklund, H. Zhang et al., Detecting Bacterial Surface Organelles on Single Cells Using Optical Tweezers, Langmuir, vol.32, issue.18, pp.4521-4529, 2016.
DOI : 10.1021/acs.langmuir.5b03845

B. Nan and D. Zusman, Novel mechanisms power bacterial gliding motility, Molecular Microbiology, vol.5, issue.2, pp.186-193, 2016.
DOI : 10.1038/nrmicro1770

L. Craig, M. Pique, and J. Tainer, Type IV pilus structure and bacterial pathogenicity, Nature Reviews Microbiology, vol.166, issue.5, pp.363-378, 2004.
DOI : 10.4049/jimmunol.166.11.6764

M. Andersson, O. Björnham, M. Svantesson, A. Badahdah, B. Uhlin et al., A Structural Basis for Sustained Bacterial Adhesion: Biomechanical Properties of CFA/I Pili, Journal of Molecular Biology, vol.415, issue.5, pp.918-928, 2012.
DOI : 10.1016/j.jmb.2011.12.006

C. Korea, J. Ghigo, and C. Beloin, The sweet connection: Solving the riddle of multiple sugar-binding fimbrial adhesins in Escherichia coli, BioEssays, vol.7, issue.4, pp.300-311, 2011.
DOI : 10.2174/138955707782795610

URL : https://hal.archives-ouvertes.fr/pasteur-01393506

T. Madhavan and H. Sakellaris, Colonization Factors of Enterotoxigenic Escherichia coli, Adv Appl Micro, vol.90, pp.155-197, 2015.
DOI : 10.1016/bs.aambs.2014.09.003

Y. Li, S. Poole, K. Nishio, K. Jang, F. Rasulova et al., Structure of CFA/I fimbriae from enterotoxigenic Escherichia coli, Proceedings of the National Academy of Sciences, vol.48, issue.2, pp.10793-10798, 2009.
DOI : 10.1002/prot.10146

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2705562

P. Tripathi, A. Beaussart, D. Alsteens, V. Dupres, I. Claes et al., Adhesion and Nanomechanics of Pili from the Probiotic Lactobacillus rhamnosus GG, ACS Nano, vol.7, issue.4, pp.3685-3697, 2013.
DOI : 10.1021/nn400705u

E. Hahn, P. Wild, U. Hermanns, P. Sebbel, R. Glockshuber et al., Exploring the 3D Molecular Architecture of Escherichia coli Type 1 Pili, Journal of Molecular Biology, vol.323, issue.5, pp.845-857, 2002.
DOI : 10.1016/S0022-2836(02)01005-7

N. Mortezaei, B. Singh, J. Zakrisson, E. Bullitt, and M. Andersson, Biomechanical and Structural Features of CS2 Fimbriae of Enterotoxigenic Escherichia coli, Biophysical Journal, vol.109, issue.1, pp.49-56, 2015.
DOI : 10.1016/j.bpj.2015.05.022

M. Andersson, E. Fällman, B. Uhlin, and O. Axner, A Sticky Chain Model of the Elongation and Unfolding of Escherichia coli P Pili under Stress, Biophysical Journal, vol.90, issue.5, pp.1521-1534, 2006.
DOI : 10.1529/biophysj.105.074674

M. Andersson, E. Fällman, B. Uhlin, and O. Axner, Dynamic Force Spectroscopy of E. coli P Pili, Biophysical Journal, vol.91, issue.7, pp.2717-2725, 2006.
DOI : 10.1529/biophysj.106.087429

W. Thomas, L. Nilsson, M. Forero, E. Sokurenko, and V. Vogel, Shear-dependent ???stick-and-roll??? adhesion of type 1 fimbriated Escherichia coli, Molecular Microbiology, vol.29, issue.5, pp.1545-1557, 2004.
DOI : 10.1128/jb.177.13.3680-3686.1995

E. Miller, T. Garcia, S. Hultgren, and A. Oberhauser, The Mechanical Properties of E. coli Type 1 Pili Measured by Atomic Force Microscopy Techniques, Biophysical Journal, vol.91, issue.10, pp.3848-3856, 2006.
DOI : 10.1529/biophysj.106.088989

J. Zakrisson, K. Wiklund, M. Servin, O. Axner, C. Lacoursière et al., Rigid multibody simulation of a helix-like structure: the dynamics of bacterial adhesion pili, European Biophysics Journal, vol.104, issue.5, pp.291-300, 2015.
DOI : 10.1016/j.bpj.2013.03.059

A. Jacquot, C. Sakamoto, A. Razafitianamaharavo, C. Caillet, M. J. Fahs et al., Dynamic Modulation of Fimbrial Extension and FimH-Mannose Binding Force on Live Bacteria Under pH Changes: A Molecular Atomic Force Microscopy Analysis, Journal of Biomedical Nanotechnology, vol.10, issue.11, pp.3361-3372, 2014.
DOI : 10.1166/jbn.2014.1905

URL : https://hal.archives-ouvertes.fr/hal-01076690

M. Castelain, S. Ehlers, J. Klinth, S. Lindberg, M. Andersson et al., Fast uncoiling kinetics of F1C pili expressed by uropathogenic Escherichia coli are revealed on a single pilus level using force-measuring optical tweezers, European Biophysics Journal, vol.332, issue.3, pp.305-316, 2011.
DOI : 10.1016/j.crme.2004.03.017

M. Forero, O. Yakovenko, E. Sokurenko, W. Thomas, and V. Vogel, Uncoiling Mechanics of Escherichia coli Type I Fimbriae Are Optimized for Catch Bonds, PLoS Biology, vol.177, issue.9, p.298, 2006.
DOI : 10.1371/journal.pbio.0040298.sv001

R. Lugmaier, S. Schedin, F. Kühner, and M. Benoit, Dynamic restacking of Escherichia Coli P-pili, European Biophysics Journal, vol.231, issue.2, pp.111-120, 2008.
DOI : 10.1007/s00249-004-0430-3

N. Biais, D. Higashi, M. So, and B. Ladoux, Techniques to Measure Pilus Retraction Forces, Methods Mol Biol Clifton NJ, vol.799, pp.197-216, 2012.
DOI : 10.1007/978-1-61779-346-2_13

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5160128

B. Maier and G. Wong, How Bacteria Use Type IV Pili Machinery on Surfaces, Trends in Microbiology, vol.23, issue.12, pp.775-788, 2015.
DOI : 10.1016/j.tim.2015.09.002

J. Allemand and B. Maier, Bacterial translocation motors investigated by single molecule techniques, FEMS Microbiology Reviews, vol.33, issue.3, pp.593-610, 2009.
DOI : 10.1111/j.1574-6976.2009.00166.x

D. Müller, J. Helenius, D. Alsteens, and Y. Dufrêne, Force probing surfaces of living cells to molecular resolution, Nature Chemical Biology, vol.13, issue.6, pp.383-390, 2009.
DOI : 10.1063/1.1855407

C. Formosa-dague, C. Feuillie, A. Beaussart, S. Derclaye, S. Kucharíková et al., Sticky Matrix: Adhesion Mechanism of the Staphylococcal Polysaccharide Intercellular Adhesin, ACS Nano, vol.10, issue.3, pp.3443-3452, 2016.
DOI : 10.1021/acsnano.5b07515

P. Herman-bausier, C. Formosa-dague, C. Feuillie, C. Valotteau, and Y. Dufrêne, Forces guiding staphylococcal adhesion, Journal of Structural Biology, vol.197, issue.1, pp.65-69, 2017.
DOI : 10.1016/j.jsb.2015.12.009

A. Beaussart, A. Baker, S. Kuchma, S. El-kirat-chatel, O. Toole et al., Type IV Pili, ACS Nano, vol.8, issue.10, pp.10723-10733, 2014.
DOI : 10.1021/nn5044383

R. Sullan, A. Beaussart, P. Tripathi, S. Derclaye, S. El-kirat-chatel et al., Single-cell force spectroscopy of pili-mediated adhesion, Nanoscale, vol.64, issue.2, pp.1134-1143, 2014.
DOI : 10.1063/1.1143970

G. Li, Y. Brun, and J. Tang, Holdfast spreading and thickening during Caulobacter crescentus attachment to surfaces, BMC Microbiology, vol.13, issue.1, p.139, 2013.
DOI : 10.1016/j.mib.2009.09.014

URL : http://doi.org/10.1186/1471-2180-13-139

A. Jacquot, C. Sakamoto, A. Razafitianamarahavo, C. Caillet, M. J. Fahs et al., The dynamics and pH-dependence of Ag43 adhesins??? self-association probed by atomic force spectroscopy, Nanoscale, vol.412, issue.21, pp.12665-12681, 2014.
DOI : 10.1038/35086581

URL : https://hal.archives-ouvertes.fr/pasteur-01381823

E. Potthoff, D. Ossola, T. Zambelli, and J. Vorholt, Bacterial adhesion force quantification by fluidic force microscopy, Nanoscale, vol.70, issue.9, pp.4070-4079, 2015.
DOI : 10.1063/1.1150021

L. Ma, K. Jackson, R. Landry, M. Parsek, and D. Wozniak, Analysis of Pseudomonas aeruginosa Conditional Psl Variants Reveals Roles for the Psl Polysaccharide in Adhesion and Maintaining Biofilm Structure Postattachment, Journal of Bacteriology, vol.188, issue.23, pp.8213-8221, 2006.
DOI : 10.1128/JB.01202-06

M. Gibiansky, W. Hu, K. Dahmen, W. Shi, and G. Wong, Earthquake-like dynamics in Myxococcus xanthus social motility, Proceedings of the National Academy of Sciences, vol.83, issue.2, pp.2330-2335, 2013.
DOI : 10.1016/0076-6879(82)83003-6

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568354

L. Faure, J. Fiche, L. Espinosa, A. Ducret, V. Anantharaman et al., The mechanism of force transmission at bacterial focal adhesion complexes, Nature, vol.9, issue.7630, pp.530-535, 2016.
DOI : 10.1038/nmeth.2224

URL : https://hal.archives-ouvertes.fr/hal-01440771

V. Körstgens, H. Flemming, J. Wingender, and W. Borchard, Uniaxial compression measurement device for investigation of the mechanical stability of biofilms, Journal of Microbiological Methods, vol.46, issue.1, pp.9-17, 2001.
DOI : 10.1016/S0167-7012(01)00248-2

Y. He, B. Peterson, M. Jongsma, Y. Ren, P. Sharma et al., Stress Relaxation Analysis Facilitates a Quantitative Approach towards Antimicrobial Penetration into Biofilms, PLoS ONE, vol.118, issue.5, p.63750, 2013.
DOI : 10.1371/journal.pone.0063750.s003

URL : http://doi.org/10.1371/journal.pone.0063750

L. Pavlovsky, R. Sturtevant, J. Younger, and M. Solomon, Bacterial Biofilms, Langmuir, vol.31, issue.6, p.2036, 2015.
DOI : 10.1021/la5044156

J. Ochoa, C. Coufort, R. Escudié, A. Liné, and E. Paul, Influence of non-uniform distribution of shear stress on aerobic biofilms, Chemical Engineering Science, vol.62, issue.14, p.3672, 2007.
DOI : 10.1016/j.ces.2007.03.023

T. Shaw, M. Winston, C. Rupp, I. Klapper, and P. Stoodley, Commonality of Elastic Relaxation Times in Biofilms, Physical Review Letters, vol.61, issue.9, p.98102, 2004.
DOI : 10.1128/JB.184.13.3671-3681.2002

O. Lieleg, M. Caldara, R. Baumgärtel, and K. Ribbeck, Mechanical robustness of Pseudomonasaeruginosa biofilms, Soft Matter, vol.4, issue.7, pp.3307-3314, 2011.
DOI : 10.1046/j.1462-2920.2002.00368.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3134232

P. Stoodley, . Lewandowskiz, J. Boyle, and H. Lappin-scott, Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: An in situ investigation of biofilm rheology, Biotechnology and Bioengineering, vol.7, issue.1, p.83, 1999.
DOI : 10.1128/AAC.39.8.1688

P. Stoodley, . Lewandowskiz, J. Boyle, and H. Lappin-scott, The formation of migratory ripples in a mixed species bacterial biofilm growing in turbulent flow, Environmental Microbiology, vol.85, issue.5, p.447, 1999.
DOI : 10.1111/j.1365-2672.1998.tb05279.x

N. Aravas and C. Laspidou, On the calculation of the elastic modulus of a biofilm streamer, Biotechnology and Bioengineering, vol.1, issue.1, p.196, 2008.
DOI : 10.1002/bit.21865

J. Wimpenny, W. Manz, and U. Szewzyk, Heterogeneity in biofilms: Table 1, FEMS Microbiology Reviews, vol.24, issue.5, pp.661-671, 2000.
DOI : 10.1111/j.1574-6976.2000.tb00565.x

L. Hall-stoodley, J. Costerton, and P. Stoodley, Bacterial biofilms: from the Natural environment to infectious diseases, Nature Reviews Microbiology, vol.146, issue.2, pp.95-107, 2004.
DOI : 10.1016/S0167-7012(99)00097-4

K. Drescher, Y. Shen, B. Bassler, and H. Stone, Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems, Proceedings of the National Academy of Sciences, vol.295, issue.5559, pp.4345-4350, 2013.
DOI : 10.1126/science.295.5559.1487

R. Rusconi, S. Lecuyer, N. Autrusson, L. Guglielmini, and H. Stone, Secondary Flow as a Mechanism for the Formation of Biofilm Streamers, Biophysical Journal, vol.100, issue.6, pp.1392-1399, 2011.
DOI : 10.1016/j.bpj.2011.01.065

K. Thomas, S. Herminghaus, H. Porada, and L. Goehring, Formation of Kinneyia via shear-induced instabilities in microbial mats, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.21, issue.7001, p.20120362, 2013.
DOI : 10.1063/1.862409

E. Hollenbeck, J. Fong, J. Lim, F. Yildiz, G. Fuller et al., Molecular Determinants of Mechanical Properties of V.??cholerae Biofilms at??the Air-Liquid Interface, Biophysical Journal, vol.107, issue.10, pp.2245-2252, 2014.
DOI : 10.1016/j.bpj.2014.10.015

E. Hollenbeck, C. Douarche, J. Allain, P. Roger, C. Regeard et al., Pellicle, The Journal of Physical Chemistry B, vol.120, issue.26, p.6080, 2016.
DOI : 10.1021/acs.jpcb.6b02074

URL : https://hal.archives-ouvertes.fr/hal-01426798

P. Stewart and M. Franklin, Physiological heterogeneity in biofilms, Nature Reviews Microbiology, vol.167, issue.3, p.199, 2008.
DOI : 10.1099/00221287-146-3-547

D. Lopez, H. Vlamakis, and R. Kolter, Biofilms, Cold Spring Harbor Perspectives in Biology, vol.2, issue.7, p.398, 2010.
DOI : 10.1101/cshperspect.a000398

A. Bridier, P. Sanchez-vizuete, M. Guilbaud, J. Piard, M. Naïtali et al., Biofilm-associated persistence of food-borne pathogens, Food Microbiology, vol.45, pp.167-178, 2015.
DOI : 10.1016/j.fm.2014.04.015

URL : https://hal.archives-ouvertes.fr/hal-01204463

C. Douarche, J. Allain, and E. Raspaud, Bacillus subtilis Bacteria Generate an Internal Mechanical Force within a Biofilm, Biophysical Journal, vol.109, issue.10, p.2195, 2015.
DOI : 10.1016/j.bpj.2015.10.004

URL : https://hal.archives-ouvertes.fr/hal-01276518

H. Cao, O. Habimana, A. Safari, R. Heffernan, Y. Dai et al., Revealing region-specific biofilm viscoelastic properties by means of a micro-rheological approach, npj Biofilms and Microbiomes, vol.155, issue.1, p.5, 2016.
DOI : 10.1099/mic.0.025064-0

T. Mah, O. Toole, and G. , Mechanisms of biofilm resistance to antimicrobial agents, Trends in Microbiology, vol.9, issue.1, p.34, 2001.
DOI : 10.1016/S0966-842X(00)01913-2

O. Galy, P. Latour-lambert, K. Zrelli, J. Ghigo, C. Beloin et al., Mapping of Bacterial Biofilm Local Mechanics by Magnetic Microparticle Actuation, Biophysical Journal, vol.103, issue.6, pp.1400-1408, 2012.
DOI : 10.1016/j.bpj.2012.07.001

URL : https://hal.archives-ouvertes.fr/hal-00950106

X. Wang, J. Han, K. Li, G. Wang, and M. Hao, Multi-layer composite mechanical modeling for the inhomogeneous biofilm mechanical behavior, Journal of Bioinformatics and Computational Biology, vol.52, issue.04, p.1650014, 2016.
DOI : 10.1002/1097-0290(20000120)72:2<205::AID-BIT9>3.0.CO;2-L

M. Grant, B. Waclaw, R. Allen, and P. Cicuta, The role of mechanical forces in the planar-to-bulk transition in growing Escherichia coli microcolonies, Journal of The Royal Society Interface, vol.77, issue.1, p.20140400, 2014.
DOI : 10.1115/1.4000924

C. Guégan, J. Garderes, L. Pennec, G. Gaillard, F. Fay et al., Alteration of bacterial adhesion induced by the substrate stiffness, Colloids and Surfaces B: Biointerfaces, vol.114, p.193, 2014.
DOI : 10.1016/j.colsurfb.2013.10.010

M. Delarue, J. Hartung, C. Schreck, P. Gniewek, L. Hu et al., Self-driven jamming in growing microbial??populations, Nature Physics, vol.27, issue.8, p.762, 2016.
DOI : 10.1073/pnas.0706805105

S. Chew, B. Kundukad, W. Teh, P. Doyle, L. Yang et al., Mechanical signatures of microbial biofilms in micropillar-embedded growth chambers, Soft Matter, vol.22, issue.23, p.5224, 2016.
DOI : 10.1088/0957-4484/22/49/494007

M. Trejo, C. Douarche, V. Bailleux, C. Poulard, S. Mariot et al., Elasticity and wrinkled morphology of Bacillus subtilis pellicles, Proceedings of the National Academy of Sciences, vol.106, issue.22, p.2011
DOI : 10.1103/PhysRevLett.106.224301

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568355

M. Asally, M. Kittisopikul, P. Rué, Y. Du, Z. Hu et al., Localized cell death focuses mechanical forces during 3D patterning in a biofilm, Proceedings of the National Academy of Sciences, vol.51, issue.12, p.18891
DOI : 10.1167/iovs.10-5470

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3503208

J. Wilking, V. Zaburdaev, D. Volder, M. Losick, R. Brenner et al., Liquid transport facilitated by channels in Bacillus subtilis biofilms, Proceedings of the National Academy of Sciences, vol.98, issue.20, p.848
DOI : 10.1073/pnas.191384198

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3549102

D. Espeso, A. Carpio, and B. Einarsson, Differential growth of wrinkled biofilms, Physical Review E, vol.14, issue.2, p.22710, 2015.
DOI : 10.1103/PhysRevD.90.084029

URL : http://arxiv.org/abs/1502.06416

C. Zhang, B. Li, X. Huang, Y. Ni, and X. Feng, Morphomechanics of bacterial biofilms undergoing anisotropic differential growth, Applied Physics Letters, vol.54, issue.14, p.143701, 2016.
DOI : 10.1115/1.4030010

V. Berk, J. Fong, G. Dempsey, O. Develioglu, X. Zhuang et al., Molecular Architecture and Assembly Principles of Vibrio cholerae Biofilms, Science, vol.109, issue.1, pp.236-239, 2012.
DOI : 10.1016/0378-1119(91)90604-A

URL : http://doi.org/10.1016/j.bpj.2011.11.3364

M. Doi and S. Edwards, The Theory of Polymer Dynamics, 1986.

E. Mendes, P. Lindner, M. Buzier, and F. Boue, Experimental evidence for inhomogeneous swelling and deformation in statistical gels, Physical Review Letters, vol.21, issue.12, pp.1595-1598, 1991.
DOI : 10.1021/ma00183a045

M. Llorente, A. Andrady, and J. Mark, Model networks of end-linked polydimethylsiloxane chains. XI. Use of very short network chains to improve ultimate properties, Journal of Polymer Science: Polymer Physics Edition, vol.19, issue.4, pp.621-630, 1981.
DOI : 10.1002/pol.1981.180190406

P. Flory and J. Rehner, Statistical Mechanics of Cross???Linked Polymer Networks I. Rubberlike Elasticity, The Journal of Chemical Physics, vol.163, issue.11, pp.512-520, 1943.
DOI : 10.1021/ja01856a061

P. Flory and J. Rehner, Statistical Mechanics of Cross???Linked Polymer Networks II. Swelling, The Journal of Chemical Physics, vol.38, issue.11, pp.521-526, 1943.
DOI : 10.1021/ie50326a012

H. James and E. Guth, Theory of the Elastic Properties of Rubber, The Journal of Chemical Physics, vol.60, issue.10, pp.455-481, 1943.
DOI : 10.1021/ie50395a022

A. Seminara, T. Angelini, J. Wilking, H. Vlamakis, S. Ebrahim et al., Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix, Proceedings of the National Academy of Sciences, vol.56, issue.2, pp.1116-1121
DOI : 10.1103/PhysRevE.56.4451

T. Bertrand, J. Peixinho, S. Mukhopadhyay, and C. Macminn, Dynamics of Swelling and Drying in a Spherical Gel, Physical Review Applied, vol.392, issue.6, p.64010, 2016.
DOI : 10.1073/pnas.0805132106

K. Li, K. Ding, and S. Cai, Diffusion-induced wrinkling instability in a circular poroelastic plate, Applied Physics Letters, vol.102, issue.24, p.241908, 2013.
DOI : 10.1063/1.3370354

J. Dervaux, B. Amar, and M. , Mechanical Instabilities of Gels, Annual Review of Condensed Matter Physics, vol.3, issue.1, pp.311-332, 2011.
DOI : 10.1146/annurev-conmatphys-062910-140436

B. Li, Y. Cao, X. Feng, and H. Gao, Mechanics of morphological instabilities and surface wrinkling in soft materials: a review, Soft Matter, vol.20, issue.21, pp.5728-5745, 2012.
DOI : 10.1140/epje/i2005-10080-0

C. Peak, J. Wilker, and G. Schmidt, A review on tough and sticky hydrogels, Colloid and Polymer Science, vol.9, issue.9, pp.2031-2047, 2013.
DOI : 10.1021/mz2001548

Y. Akagi, H. Sakurai, J. Gong, U. Chung, and T. Sakai, Fracture energy of polymer gels with controlled network structures, The Journal of Chemical Physics, vol.139, issue.14, p.144905, 2013.
DOI : 10.1007/s101890070010

J. Gong, Y. Katsuyama, T. Kurokawa, and Y. Osada, Double-Network Hydrogels with Extremely High Mechanical Strength, Advanced Materials, vol.15, issue.14, pp.1155-1158, 2003.
DOI : 10.1002/adma.200304907

T. Nakajima, H. Furukawa, Y. Tanaka, T. Kurokawa, Y. Osada et al., True Chemical Structure of Double Network Hydrogels, Macromolecules, vol.42, issue.6, pp.2184-2189, 2009.
DOI : 10.1021/ma802148p

W. Zheng, Z. Liu, F. Xu, J. Gao, Y. Chen et al., In Vitro Platelet Adhesion of PNaAMPS/PAAm and PNaAMPS/PDMAAm Double-Network Hydrogels, Macromolecular Chemistry and Physics, vol.88, issue.6, pp.641-649, 2015.
DOI : 10.1002/jbm.a.31869

E. Ducrot, Y. Chen, M. Bulters, R. Sijbesma, and C. Creton, Toughening Elastomers with Sacrificial Bonds and Watching Them Break, Science, vol.35, issue.7, pp.186-189, 2014.
DOI : 10.1021/ma0203849

URL : https://hal.archives-ouvertes.fr/hal-01516045

J. Sun, X. Zhao, W. Illeperuma, O. Chaudhuri, K. Oh et al., Highly stretchable and tough hydrogels, Nature, vol.24, issue.7414, pp.133-136, 2012.
DOI : 10.1111/j.1475-1313.2004.00236.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3642868

K. Haraguchi and H. Li, The effect of water content on the ultimate properties of rubbery nanocomposite gels, Journal of Polymer Science Part B: Polymer Physics, vol.75, issue.23, pp.2328-2340, 2009.
DOI : 10.1002/polb.21829

A. Gaharwar, C. Rivera, C. Wu, and G. Schmidt, Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles, Acta Biomaterialia, vol.7, issue.12, pp.4139-4148, 2011.
DOI : 10.1016/j.actbio.2011.07.023

T. Wang, D. Liu, C. Lian, S. Zheng, X. Liu et al., Large deformation behavior and effective network chain density of swollen poly(N-isopropylacrylamide)???Laponite nanocomposite hydrogels, Soft Matter, vol.40, issue.3, pp.774-783, 2012.
DOI : 10.1021/ma062929v

L. Carlsson, S. Rose, D. Hourdet, and A. Marcellan, Nano-hybrid self-crosslinked PDMA/silica hydrogels, Soft Matter, vol.326, issue.15, pp.3619-3631, 2010.
DOI : 10.1002/masy.200750851

T. Nishida, H. Endo, N. Osaka, H. Li, K. Haraguchi et al., Deformation mechanism of nanocomposite gels studied by contrast variation small-angle neutron scattering, Physical Review E, vol.80, issue.3, p.30801, 2009.
DOI : 10.1063/1.446055

S. Rose, A. Prevoteau, P. Elziere, D. Hourdet, A. Marcellan et al., Nanoparticle solutions as adhesives for gels and biological tissues, Nature, vol.7, issue.7483, pp.382-385, 2014.
DOI : 10.1002/app.1963.070070316

URL : https://hal.archives-ouvertes.fr/hal-01078535

H. Koo and K. Yamada, Dynamic cell???matrix interactions modulate microbial biofilm and tissue 3D microenvironments, Current Opinion in Cell Biology, vol.42, pp.102-114, 2016.
DOI : 10.1016/j.ceb.2016.05.005

H. Chen, X. Zhao, X. Lu, and G. Kassab, Non-linear micromechanics of soft tissues, International Journal of Non-Linear Mechanics, vol.56, pp.79-85, 2013.
DOI : 10.1016/j.ijnonlinmec.2013.03.002

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4012686

V. Sherman, Y. W. Meyers, and M. , The materials science of collagen, Journal of the Mechanical Behavior of Biomedical Materials, vol.52, pp.22-50, 2015.
DOI : 10.1016/j.jmbbm.2015.05.023

Y. Fung and . Biomechanics, Mechanical Properties of Living Tissues. second edition, 1993.

C. Frantz, K. Stewart, and V. Weaver, The extracellular matrix at a glance, Journal of Cell Science, vol.123, issue.24, pp.4195-200, 2010.
DOI : 10.1242/jcs.023820

D. Veronda and R. Westmann, Mechanical characterization of skin???Finite deformations, Journal of Biomechanics, vol.3, issue.1, pp.111-124, 1970.
DOI : 10.1016/0021-9290(70)90055-2

A. Caro-bretelle, P. Gountsop, P. Ienny, R. Leger, S. Corn et al., Effect of sample preservation on stress softening and permanent set of porcine skin, Journal of Biomechanics, vol.48, issue.12, pp.3135-3176, 2015.
DOI : 10.1016/j.jbiomech.2015.07.014

R. Puxkandl, I. Zizak, O. Paris, J. Keckes, W. Tesch et al., Viscoelastic properties of collagen: synchrotron radiation investigations and structural model, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.357, issue.1418, pp.191-198, 2002.
DOI : 10.1098/rstb.2001.1033

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1692933

K. Hansen, J. Weiss, and J. Barton, Recruitment of Tendon Crimp With Applied Tensile Strain, Journal of Biomechanical Engineering, vol.124, issue.1, p.72, 2002.
DOI : 10.1115/1.1427698

H. Gupta, J. Seto, S. Krauss, P. Boesecke, and H. Screen, In situ multi-level analysis of viscoelastic deformation mechanisms in tendon collagen, Journal of Structural Biology, vol.169, issue.2, pp.183-91, 2010.
DOI : 10.1016/j.jsb.2009.10.002

S. Bancelin, B. Lynch, C. Bonod-bidaud, G. Ducourthial, S. Psilodimitrakopoulos et al., Ex vivo multiscale quantitation of skin biomechanics in wild-type and genetically-modified mice using multiphoton microscopy, Scientific Reports, vol.16, issue.1, p.17635, 2015.
DOI : 10.1111/j.1600-0625.2006.00534.x

URL : https://hal.archives-ouvertes.fr/hal-01252023

J. Humphrey, Review Paper: Continuum biomechanics of soft biological tissues, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.459, issue.2029, pp.3-46, 2003.
DOI : 10.1098/rspa.2002.1060

A. Sverdlik and Y. Lanir, Time-Dependent Mechanical Behavior of Sheep Digital Tendons, Including the Effects of Preconditioning, Journal of Biomechanical Engineering, vol.124, issue.1, p.78, 2002.
DOI : 10.1115/1.1427699

M. Delarue, F. Montel, D. Vignjevic, J. Prost, J. Joanny et al., Compressive Stress Inhibits Proliferation in Tumor Spheroids through a Volume Limitation, Biophysical Journal, vol.107, issue.8, pp.1821-1828, 2014.
DOI : 10.1016/j.bpj.2014.08.031

URL : https://hal.archives-ouvertes.fr/hal-01123922

R. Skalak, S. Zargaryan, R. Jain, P. Netti, and A. Hoger, Compatibility and the genesis of residual stress by volumetric growth, Journal of Mathematical Biology, vol.76, issue.3a, pp.889-914, 1996.
DOI : 10.1007/978-94-009-7538-5_23

E. Rodriguez, A. Hoger, and A. Mcculloch, Stress-dependent finite growth in soft elastic tissues, Journal of Biomechanics, vol.27, issue.4, pp.455-67, 1994.
DOI : 10.1016/0021-9290(94)90021-3

L. Taber and D. Eggers, Theoretical Study of Stress-Modulated Growth in the Aorta, Journal of Theoretical Biology, vol.180, issue.4, pp.343-357, 1996.
DOI : 10.1006/jtbi.1996.0107

A. Goriely, J. Weickenmeier, and E. Kuhl, Stress Singularities in Swelling Soft Solids, Physical Review Letters, vol.9, issue.13, p.138001, 2016.
DOI : 10.1016/j.jmps.2010.12.011

D. Ambrosi and F. Mollica, The role of stress in the growth of a multicell spheroid, Journal of Mathematical Biology, vol.48, issue.5, pp.477-99, 2004.
DOI : 10.1007/s00285-003-0238-2

B. Amar, M. Jia, and F. , Anisotropic growth shapes intestinal tissues during embryogenesis, Proceedings of the National Academy of Sciences, vol.12, issue.7, pp.10525-10555
DOI : 10.1103/RevModPhys.65.851

R. Vandiver and A. Goriely, Tissue tension and axial growth of cylindrical structures in plants and elastic tissues, EPL (Europhysics Letters), vol.84, issue.5, p.58004, 2008.
DOI : 10.1209/0295-5075/84/58004

B. Amar, M. Goriely, and A. , Growth and instability in elastic tissues, Journal of the Mechanics and Physics of Solids, vol.53, issue.10, pp.2284-319, 2005.
DOI : 10.1016/j.jmps.2005.04.008

A. Zöllner, A. Buganza-tepole, and E. Kuhl, On the biomechanics and mechanobiology of growing skin, Journal of Theoretical Biology, vol.297, pp.166-75, 2012.
DOI : 10.1016/j.jtbi.2011.12.022

J. Humphrey, E. Dufresne, and M. Schwartz, Mechanotransduction and extracellular matrix homeostasis, Nature Reviews Molecular Cell Biology, vol.42, issue.12, pp.802-814, 2014.
DOI : 10.1016/j.jbiomech.2008.11.011

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4513363

A. Goriely and M. Amar, On the definition and modeling of incremental, cumulative, and continuous growth laws in morphoelasticity, Biomechanics and Modeling in Mechanobiology, vol.180, issue.5, pp.289-96, 2007.
DOI : 10.1115/1.3564580

B. Moulia, C. Coutand, and C. Lenne, Posture control and skeletal mechanical acclimation in terrestrial plants: implications for mechanical modeling of plant architecture, American Journal of Botany, vol.93, issue.10, pp.1477-1489, 2006.
DOI : 10.3732/ajb.93.10.1477

URL : https://hal.archives-ouvertes.fr/hal-01189136

J. Whitney and P. Howell, Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria, Trends in Microbiology, vol.21, issue.2, pp.63-72, 2013.
DOI : 10.1016/j.tim.2012.10.001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113494

J. J. Thwaites and M. N. , Biomechanics of bacterial walls: studies of bacterial thread made from Bacillus subtilis., Proceedings of the National Academy of Sciences, vol.82, issue.7, pp.2163-2167, 1985.
DOI : 10.1073/pnas.82.7.2163

A. E. Pelling, Y. Li, W. Shi, and G. J. , Nanoscale visualization and characterization of Myxococcus xanthus cells with atomic force microscopy, Proceedings of the National Academy of Sciences, vol.56, issue.9, pp.6484-6489, 2005.
DOI : 10.1103/PhysRevLett.56.930

D. P. Holland and W. A. , Digital recordings of gas-vesicle collapse used to measure turgor pressure and cell???water relations of cyanobacterial cells, Journal of Microbiological Methods, vol.77, issue.2, pp.214-224, 2009.
DOI : 10.1016/j.mimet.2009.02.005

M. Arnoldi, M. Fritz, E. Bäuerlein, M. Radmacher, E. Sackmann et al., Bacterial turgor pressure can be measured by atomic force microscopy, Physical Review E, vol.10, issue.1, pp.1034-1044, 2000.
DOI : 10.1021/la00022a068

X. Yao, J. Walterc, S. Burke, S. , S. Stewart et al., Atomic force microscopy and theoretical considerations of surface properties and turgor pressures of bacteria, Colloids and Surfaces B: Biointerfaces, vol.23, issue.2-3, pp.213-230, 2002.
DOI : 10.1016/S0927-7765(01)00249-1

J. Swift, Nuclear Lamin-A Scales with Tissue Stiffness and Enhances Matrix-Directed Differentiation, Science, vol.26, issue.15, p.1240104, 2013.
DOI : 10.1128/MCB.00211-06

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976548