Discontinuous Skeletal Gradient Discretisation Methods on polytopal meshes

Abstract : In this work we develop arbitrary-order Discontinuous Skeletal Gradient Discretisations (DSGD) on general polytopal meshes. Discontinuous Skeletal refers to the fact that the globally coupled unknowns are broken polynomial on the mesh skeleton. The key ingredient is a high-order gradient reconstruction composed of two terms: (i) a consistent contribution obtained mimicking an integration by parts formula inside each element and (ii) a stabilising term for which sufficient design conditions are provided. An example of stabilisation that satisfies the design conditions is proposed based on a local lifting of high-order residuals on a Raviart–Thomas–Nédélec subspace. We prove that the novel DSGDs satisfy coercivity, consistency, limit-conformity, and compactness requirements that ensure convergence for a variety of elliptic and parabolic problems. Links with Hybrid High-Order, non-conforming Mimetic Finite Difference and non-conforming Virtual Element methods are also studied. Numerical examples complete the exposition.
Type de document :
Article dans une revue
Journal of Computational Physics, Elsevier, 2017, 355, pp.397 - 425. 〈10.1016/j.jcp.2017.11.018〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01564598
Contributeur : Daniele Antonio Di Pietro <>
Soumis le : mercredi 6 décembre 2017 - 09:15:00
Dernière modification le : jeudi 21 juin 2018 - 14:12:01

Fichier

gdmpho.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Daniele Di Pietro, Jérôme Droniou, Gianmarco Manzini. Discontinuous Skeletal Gradient Discretisation Methods on polytopal meshes. Journal of Computational Physics, Elsevier, 2017, 355, pp.397 - 425. 〈10.1016/j.jcp.2017.11.018〉. 〈hal-01564598v3〉

Partager

Métriques

Consultations de la notice

124

Téléchargements de fichiers

20