The halfspace Matchnig Method : a new method to solve scattering problem in infinite media

Anne-Sophie Bonnet-Ben Dhia 1 Sonia Fliss 1 Antoine Tonnoir 1
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, ENSTA ParisTech UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : We are interested in acoustic wave propagation in time harmonic regime in a two-dimensional medium which is a local perturbation of an infinite isotropic or anisotropic homogeneous medium. We investigate the question of finding artificial boundary conditions to reduce the numerical computations to a neighborhood of this perturbation. Our objective is to derive a method which can extend to the anisotropic elastic problem for which classical approaches fail. The idea consists in coupling several semi-analytical representations of the solution in halfspaces surrounding the defect with a Finite Element computation of the solution around the defect. As representations of the same function, they have to match in the infinite intersections of the halfspaces. It leads to a formulation which couples, via integral operators, the solution in a bounded domain including the defect and its traces on the edge of the halfspaces. A stability property is shown for this new formulation.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01561339
Contributeur : Sonia Fliss <>
Soumis le : mardi 25 juillet 2017 - 13:46:55
Dernière modification le : vendredi 4 août 2017 - 14:02:43

Fichier

BBDFT_V1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01561339, version 2

Citation

Anne-Sophie Bonnet-Ben Dhia, Sonia Fliss, Antoine Tonnoir. The halfspace Matchnig Method : a new method to solve scattering problem in infinite media. 2017. <hal-01561339v2>

Partager

Métriques

Consultations de
la notice

51

Téléchargements du document

18