On the Bickel-Rosenblatt test of goodness-of-fit for the residuals of autoregressive processes

Abstract : We investigate in this paper a Bickel-Rosenblatt test of goodness-of-fit for the density of the noise in an autoregressive model. Since the seminal work of Bickel and Rosenblatt, it is well-known that the integrated squared error of the Parzen-Rosenblatt density estimator, once correctly renormalized, is asymptotically Gaussian for independent and identically distributed (i.i.d.) sequences. We show that the result still holds when the statistic is built from the residuals of general stable and explosive autoregressive processes. In the univariate unstable case, we prove that the result holds when the unit root is located at $-1$ whereas we give further results when the unit root is located at $1$. In particular, we establish that except for some particular asymmetric kernels leading to a non-Gaussian limiting distribution and a slower convergence, the statistic has the same order of magnitude. We also study some common unstable cases, like the integrated seasonal process. Finally we build a goodness-of-fit Bickel-Rosenblatt test for the true density of the noise together with its empirical properties on the basis of a simulation study.
Type de document :
Article dans une revue
ESAIM: Probability and Statistics, EDP Sciences, In press
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01551093
Contributeur : Frédéric Proïa <>
Soumis le : vendredi 30 juin 2017 - 06:49:10
Dernière modification le : samedi 15 septembre 2018 - 19:10:24

Lien texte intégral

Identifiants

  • HAL Id : hal-01551093, version 1
  • ARXIV : 1706.09811

Citation

Agnès Lagnoux, Thi Mong Ngoc Nguyen, Frédéric Proïa. On the Bickel-Rosenblatt test of goodness-of-fit for the residuals of autoregressive processes. ESAIM: Probability and Statistics, EDP Sciences, In press. 〈hal-01551093〉

Partager

Métriques

Consultations de la notice

109