Skip to Main content Skip to Navigation
Journal articles

On the Bickel-Rosenblatt test of goodness-of-fit for the residuals of autoregressive processes

Abstract : We investigate in this paper a Bickel-Rosenblatt test of goodness-of-fit for the density of the noise in an autoregressive model. Since the seminal work of Bickel and Rosenblatt, it is well-known that the integrated squared error of the Parzen-Rosenblatt density estimator, once correctly renormalized, is asymptotically Gaussian for independent and identically distributed (i.i.d.) sequences. We show that the result still holds when the statistic is built from the residuals of general stable and explosive autoregressive processes. In the univariate unstable case, we prove that the result holds when the unit root is located at $-1$ whereas we give further results when the unit root is located at $1$. In particular, we establish that except for some particular asymmetric kernels leading to a non-Gaussian limiting distribution and a slower convergence, the statistic has the same order of magnitude. We also study some common unstable cases, like the integrated seasonal process. Finally we build a goodness-of-fit Bickel-Rosenblatt test for the true density of the noise together with its empirical properties on the basis of a simulation study.
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-01551093
Contributor : Frédéric Proïa <>
Submitted on : Friday, June 30, 2017 - 6:49:10 AM
Last modification on : Monday, March 9, 2020 - 6:15:54 PM

Links full text

Identifiers

  • HAL Id : hal-01551093, version 1
  • ARXIV : 1706.09811

Citation

Agnès Lagnoux, Thi Mong Ngoc Nguyen, Frédéric Proïa. On the Bickel-Rosenblatt test of goodness-of-fit for the residuals of autoregressive processes. ESAIM: Probability and Statistics, EDP Sciences, In press. ⟨hal-01551093⟩

Share

Metrics

Record views

186