A Proposition for Sequence Mining Using Pattern Structures

Victor Codocedo 1 Guillaume Bosc 1 Mehdi Kaytoue 1 Jean-François Boulicaut 1 Amedeo Napoli 2
1 DM2L - Data Mining and Machine Learning
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
2 ORPAILLEUR - Knowledge representation, reasonning
Inria Nancy - Grand Est, LORIA - NLPKD - Department of Natural Language Processing & Knowledge Discovery
Abstract : In this article we present a novel approach to rare sequence mining using pattern structures. Particularly, we are interested in mining closed sequences, a type of maximal sub-element which allows providing a succinct description of the patterns in a sequence database. We present and describe a sequence pattern structure model in which rare closed subsequences can be easily encoded. We also propose a discussion and characterization of the search space of closed sequences and, through the notion of sequence alignments, provide an intuitive implementation of a similarity operator for the sequence pattern structure based on directed acyclic graphs. Finally, we provide an experimental evaluation of our approach in comparison with state-of-the-art closed sequence mining algorithms showing that our approach can largely outperform them when dealing with large regions of the search space.
Type de document :
Communication dans un congrès
Karell Bertet and Daniel Borchmann and Peggy Cellier and Sébastien Ferré. ICFCA 2017 - 14th International Conference on Formal Concept Analysis, Jun 2017, Rennes, France. Springer, Formal Concept Analysis - 14th International Conference, ICFCA 2017, Rennes, France, June 13-16, 2017, Proceedings, 10308, pp.106-121, 2017, Lecture Notes in Computer Science. 〈https://icfca2017.irisa.fr〉. 〈10.1007/978-3-319-59271-8_7〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01549107
Contributeur : Mehdi Kaytoue <>
Soumis le : mercredi 28 juin 2017 - 15:07:31
Dernière modification le : mercredi 19 septembre 2018 - 10:00:47
Document(s) archivé(s) le : mercredi 17 janvier 2018 - 20:33:35

Fichier

ICFCA2017.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Victor Codocedo, Guillaume Bosc, Mehdi Kaytoue, Jean-François Boulicaut, Amedeo Napoli. A Proposition for Sequence Mining Using Pattern Structures. Karell Bertet and Daniel Borchmann and Peggy Cellier and Sébastien Ferré. ICFCA 2017 - 14th International Conference on Formal Concept Analysis, Jun 2017, Rennes, France. Springer, Formal Concept Analysis - 14th International Conference, ICFCA 2017, Rennes, France, June 13-16, 2017, Proceedings, 10308, pp.106-121, 2017, Lecture Notes in Computer Science. 〈https://icfca2017.irisa.fr〉. 〈10.1007/978-3-319-59271-8_7〉. 〈hal-01549107〉

Partager

Métriques

Consultations de la notice

484

Téléchargements de fichiers

286